
Submitted by

Stefan Amberger

Submitted at

Research Institute for
Symbolic Computation

Supervisor

Univ.-Prof. Dr.
Peter Paule

Supervisor

Dr.sc.techn. Dipl.-Ing.
Volker Strumpen

Supervisor

A.Univ.-Prof. DI Dr.
Wolfgang Schreiner

Nov 2018

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69

4040 Linz, Österreich

www.jku.at

DVR 0093696

A Parallel, In-Place,
Rectangular Matrix
Transpose Algorithm

Master Thesis

to obtain the academic degree of

Diplom-Ingenieur

in the Master’s Program

Computermathematics

Statement of Originality

I hereby declare, that the work contained in this thesis has not been previously submitted for a degree or
diploma at any higher education institution.

To the best of my knowledge and belief, the thesis contains no material previously published or written
by another person except where due references are made.

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und ohne fremde Hilfe
verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder sin-
ngemäß entnommenen Stellen als solche kenntlich gemacht habe. Die vorliegende Masterarbeit ist mit
dem elektronisch übermittelten Textdokument identisch.

Signature

Date

I

Abstract

This thesis presents a novel algorithm for Transposing Rectangular matrices In-place and in Parallel
(TRIP) including a proof of correctness and an analysis of work, span and parallelism.

After almost 60 years since its introduction, the problem of in-place rectangular matrix transposition
still does not have a satisfying solution. Increased concurrency in todays computers, and the need for low-
overhead algorithms to solve memory-intense challenges are motivating the development of algorithms
like TRIP.

The algorithm is based on recursive splitting of the matrix into sub-matrices, independent, parallel
transposition of these sub-matrices, and subsequent combining of the results by a parallel, perfect shu�e.

We prove correctness of the algorithm for di�erent matrix shapes (ratios of dimensions), and analyze
work and span: For an M ùN matrix, where M > N , and both M and N are powers of two, TRIP has
work

W
TRIP
1 (M ,N) = ⇥

⇠

MN log M

N
logN

⇡

span
W

TRIP
ÿ (M ,N) = ⇥

⇠

log M

N
log2N + log2 M

N
logN

⇡

and a parallelism of

⇥
0

MN

logM_N + logN

1

Due to symmetry, the work and span of a M ùN matrix with M < N can be calculated by interchanging
M and N in the formulas above. Compared to out-of-place algorithms, which have work M �N , TRIP,
implemented in Cilk, trades work-e�ciency for parallelism and for being in-place.

Keywords: in-place, rectangular matrix transposition, parallel algorithm, Cilk

II

Contents

Contents III

1 Introduction 1

2 Related Work 3
2.1 Review of In-place Matrix Transpose Algorithms . 3
2.2 Further Influences . 4

3 Description of Transpose Algorithm 5
3.1 Basic Definitions . 5
3.2 Transpose . 7
3.3 Merge . 9
3.4 Split . 11
3.5 Square Transpose . 13
3.6 Iterators . 15

4 Proof of Correctness 17
4.1 Correctness Proof of Combine Method merge . 17
4.2 Correctness Proof of Combine Method split . 20
4.3 Correctness Proof of TRIP . 22

5 Complexity Analysis 24
5.1 Work . 24
5.2 Span . 30
5.3 Parallelism . 35
5.4 Interpretation of Results . 36

5.4.1 Work and Span . 36
5.4.2 Parallelism . 36
5.4.3 Analysis for Matrix Configurations that are not Powers of Two 37
5.4.4 Optimizations to the Algorithm . 37

6 Experimental Results 42
6.1 Performance . 42

6.1.1 Changing Aspect Ratio, Constant Matrix Size 42

III

6.1.2 Changing Matrix Size, Constant Aspect Ratio 42
6.2 Scalability . 43

7 Conclusions 49

References 50

IV

1 Introduction

Transposing matrices is one of the most basic operations in linear algebra, and widely used across many
fields. Notable fields of application are, among others, Fast Fourier Transform algorithms like FFTW [8]
and fluid dynamics software like OpenFOAM [13], which supports rectangular transpositions, but cur-
rently does not feature an in-place algorithm. While Intels© MKL: supports in-place transpositions [10],
neither BLAS nor OpenBLAS do so at the moment.

Ever since maximum clock frequencies of microprocessors reached their limit in 2005, manufacturers
put multiple cores on microchips to increase their capabilities. This capability can be harnessed by parallel
algorithms. The parallelism of an algorithm, the ratio of work W1 and span Wÿ, indicates on how many
cores the work of the algorithm can be distributed (see [5, p. 779�]). Except for embarrassingly parallel
problems, most parallel algorithms face a work penalty; they have additional work to do, in comparison
to their sequential versions. This penalty should be kept to a minimum but can be compensated to a
certain degree by additional cores. The span of a parallel algorithm, however, cannot be compensated by
additional cores.

Another challenge exists across devices, and drives the need for in-place algorithms: the problem-
sizes that can be tackled are often limited by memory. For this reason, in-place algorithms that do not
need abundant memory can be vital in solving bigger problems. The algorithm presented in this thesis
does not need to allocate additional memory to store parts of the matrix being transposed. This gives a
clear advantage in the case of large fluid-dynamics simulations, large data-sets in earth observation, or
small amounts of available memory in embedded devices or for signal processing.

The transposition of a rectangular matrix is very simple—in principle:

double A [M] [N] , B [N] [M] ;
f o r (i = 0 ; i < M ; i++)

f o r (j = 0 ; j < N ; j++)
B [j] [i] = A[i] [j] ;

Moving from the principle to an algorithm and from there to an in-place algorithm exposes challenges,
which we tackle via a divide-and-conquer approach.

Implemented on a computer, matrices di�er from their pure, mathematical counterparts. Memory
is 1-dimensional, as opposed to matrices in mathematics, which are 2-dimensional. An array can be
interpreted as a matrix, if sequential parts of the array are considered as the concatenation of rows (row
major, as in C) or columns (column major, as in Fortran) of a matrix. In this context a transpose algorithm,
as opposed to the mathematical transpose operator would look like this (applying a row-major format):

double A [M �N] , B [N �M] ;
f o r (i = 0 ; i < M ; i++)

1

f o r (j = 0 ; j < N ; j++)
B [j �M + i] = A [i �N + j] ;

Transposing a matrix in-place means to modify it with an algorithm which memory requirement is
O(1), and to reinterpret the result as the transpose of the original matrix, keeping the location of the
object in the same memory space [8], rather than copying the content of one matrix to a second matrix
in a specific pattern, as we did previously. The memory constraint of a parallel algorithm utilizing p

processors is loosened to O(p).
For a square matrix of dimension M an in-place algorithm is:

double A [M �M] ;
f o r (i = 0 ; i < M ; i++)

f o r (j = 0 ; j < i ; j++)
tmp = A [j �M + i] ;
A [j �M + i] = A [i �M + j] ;
A [i �M + j] = tmp ;

A temporary variable is used to swap A[j �M + i] and A[i �M + j], for all i from 1 to M and j from 1
to i. As a whole, the square matrix in-place algorithm is a permutation on A, composed of M(M + 1)_2
cycles of length 1.

In fact, all in-place matrix transpose algorithms that transpose a M ùN matrix (assuming row-major
order), one way or another, have to do work that is equivalent to applying the permutation presented in [4]
onto each array index x À {0,MN * 1}.

⇡(x) =
T

Mx mod MN * 1 if x ë MN * 1

MN * 1 if x = MN * 1

Permutations can be written as cycles, each of which is inherently serial, if tackled directly as such.
Parallelism depends upon the number of cycles of the permutation [7], which itself is dependent on the
matrix dimensions. Many algorithms exist for specific or general matrix sizes, sharing the same approach,
and exploiting various properties of this class of permutations [9, 17, 11, 14]. In this thesis we introduce
a new approach: a recursive divide-and-conquer method, called Transpose of Rectangular matrices, In-
place and in Parallel (TRIP), that does not directly implement this permutation.

This algorithm has been developed by Prof. Volker Strumpen as part of his research as head of the
Institute for Computer Architecture at Johannes Kepler University in Linz. The implementation, mathe-
matical formalization, proofs of correctness, theoretical complexity analysis and benchmarks have been
created by the author, under supervision of Prof. Strumpen, and reviewed by Prof. Wolfgang Schreiner
and Prof. Peter Paule. Regular meetings and discussions shaped the outcome of this work.

The remainder of this thesis is organized as follows. Chapter 2 reviews the field of rectangular matrix
transpose algorithms. Chapter 3 presents our parallel in-place rectangular matrix transpose algorithm
TRIP. Chapter 4 contains a correctness proof of the TRIP algorithm. Chapter 5 provides a work and span
analysis for matrices of dimensions that are powers of two, and an interpretation of the results. Finally,
Chapter 7 concludes the thesis by summarizing the results and hinting at future work.

2

2 Related Work

To put our work into the perspective of those working on the same topic before us, the first part of this
chapter contains known approaches to matrix transposition algorithms, their optimizations and historic
development. The second part of this chapter contains work that this thesis is based on, that does not
directly concern matrices and their transposes. This includes work on out-of-place matrix transpose
algorithms, perfect-shu�e algorithms, and the programming language Cilk.

2.1 Review of In-place Matrix Transpose Algorithms

There are several interpretations of the problem of in-place matrix transpositions. Historically it used to
be treated as a permutation problem. Recently divide and combine aspects are uncovered and used to
introduce a higher and more predictable degree of parallelism.

Permutation interpretation Between 1959, when Windley introduced the problem of in-place matrix
transposition [19] until 1999, all presented algorithms interpreted the in-place matrix transpose strictly as
a permutation problem. In 1968 Boothroyd presented Algorithm 302 [2], Laflin and Brebner improved
on this result in 1970 [12]. In 1973 Brenner separated the search for independent permutation cycles and
moving the data [3], again decreasing the work of the algorithm. In 1976 Cate and Twigg derived number
theoretical results to faster find independent permutation cycles [4].

One example for an in-place rectangular matrix transposition algorithm that is inspired by viewing this
operation as a permutation problem is the work done by Gustavson et al. in [9]. In this paper Gustavson et
al. present a work-e�cient transpose algorithm called MIPT, with complexity O(MN logMN). MIPS
takes configurable extra storage for e�ciency. It uses the “Burn At Both Ends” programming technique to
more quickly find the cycles of the permutation that constitutes the transpose. Gustavson et al. mention
that one drawback of rectangular in-place transpose algorithms that directly follow permutations—as
opposed to other approaches, or out-of-place algorithms—is the amount of cache misses they incur: For
most matrices, permutation cycles follow a seemingly random pattern. Hence, each element access is
almost guaranteed to be a cache miss.

Divide and conquer interpretation Starting in 1999, when Portno� introduced a parallel in-place
matrix transposition algorithm in [14], rectangular matrix transpose algorithms were seen as more than
pure permutation problems. Portno� applied the divide-and-conquer strategy to the problem.

In “An E�cient Parallel-Processing Method for Transposing Large Matrices in Place”, he presents a
matrix transpose algorithm in four steps: Step I divides the matrix into smaller element-pairs, and sub-

3

matrices. Step II transposes each of those sub-matrices in parallel, by applying the permutation that is
specific to the sub-matrix. Step III transposes the “matrix of sub-matrices”, and Step IV re-arranges the
element-pairs in order to yield the transpose of the original matrix.
This algorithm applies the divide-and-conquer paradigm on the first level, to create a sets of problems
that can be solved in parallel; then it calculates and applies permutations to solve those smaller problems.

2.2 Further Influences

Three main topics influenced this algorithm: parallel algorithms, shu�e algorithms, and the program-
ming language extension Cilk. Scalable parallel algorithms are of recursive nature, using divide and
combine steps along the way. These divide and combine steps are modified perfect shu�e algorithms.

The publications that influenced this thesis the most in this regard are written by Ellis et al. [6] in 2000,
who presents an in-situ stable merge algorithm, a modified version of which is the base of the algorithm
merge in this thesis, and by Jain [11] in 2004.

These parallel, recursive algorithms can relatively easily be implemented in Cilk. Cilk is an exten-
sion to the C and C++ programming languages, that allows data and task parallelism, using only three
additional keywords: cilk, spawn, and sync. It has been developed in the 1990s at the Massachusetts
Institute of Technology (MIT), and commercialized by Charles E. Leiserson et al. with the formation of
Cilk Arts, Inc. In 2009 Intel Corporation acquired Cilk Arts, and included parts of Cilk into the Intel
C++ compiler.
The principle behind parallel development in Cilk is that the programmer exposes parallelism in the form
of functions, which the Cilk scheduler can—but doesn’t have to—schedule in parallel. Leiserson et al.
developed a provably e�cient work-stealing scheduler [15], which allows the same program to run on
single-core as well as multi-core architectures, and make use of all available resources.

At the time of finalizing this thesis, Cilk Plus has been marked as deprecated in GCC, and will be
marked deprecated in the Intel Software Development Tools. Nevertheless the algorithm and program-
ming paradigm stays alive in the form of a Tapir [16], see http://cilk.mit.edu. In addition to that
other languages like Go implement work-stealing schedulers [18] based on Blumofe and Leisersons work
[15], allowing the same programming pattern.

Appended to this thesis is the source code of TRIP in Cilk. It is compilable e.g. with gcc-7.3 using
the compiler flags -fcilkplus and -lcilkrts.
The struct ws (short for work and span) is used to count work and span of TRIP calls, and can be removed
without changing the result.

4

http://cilk.mit.edu

3 Description of Transpose Algorithm

In this chapter the core algorithms will be presented in the form of recursions and pseudo-code. It consists
of five parts: Basic Definitions (Section 3.1, the outermost recursion, TRIP (Section 3.2), which calls all
subroutines, the main subroutines of merge (Section 3.3) and split (Section 3.4), and the base case of
the transpose recursion (Section 3.5). All algorithms are parallel, and in-place. Finally Section 3.6 covers
implementation details.

3.1 Basic Definitions

In this section we define the basic notions and notation that will be used throughout Chapter 3. We define
what we understand as a matrix and its transpose, what we call sub-matrices and composed matrices, and
lastly we define the array-representation of a matrix, and it’s inverse, the matrix-interpretation of an array.

We define a matrix and it’s transpose as follows.

Definition 1 (Matrix). Let I
n
:= {0,… , n * 1}.

A nùm matrix A with coe�cients in a ring R is a function a : I
n
ùI

m
,ô R. We define a

i,j
:= a(i, j).

In other words, A is a rectangular array.

Definition 2 (Transpose). Let A be an m ù n matrix as defined above.
Then B := A

T , the transpose of A, is the function b : I
m
ù I

n
,ô R with b

i,j
= a

j,i
.

Recursive calls (3.5a and 3.5b) are based on splitting a matrix in half, in-place transposing these sub-
matrices by calling TRIP on them, and combining the results thereafter. “Splitting a matrix in half” is
formally realized using sub-matrices.

Definition 3 (Sub-matrix). A sub-matrix A(m0 : m1, n0 : n1) of matrix A is defined by its ranges in
both dimensions, like slices in programming languages.

Let A be a matrix of dimension m ù n. Let i0, i1, j0, j1 À N, 0 f i0 < i1 < m, and 0 f j0 < j1 < n.
Let B := A(i0 : i1, j0 : j1) be a sub-matrix of A of dimension i1 * i0 ù j1 * j0.
Then B is defined as follows:

≈i < i1 * i0, j < j1 * j0 : b
i,j

= a
i0+i,j0+j

For example,

A :=
`

r

r

r

p

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3

a

s

s

s

q

Ÿ A(0 : 2, 2 : 4) =
H

a0,2 a0,3
a1,2 a1,3

I

(3.1)

5

Inverse to the concept of the sub-matrix is the composed matrix.

Definition 4 (composed matrices). Let A be a matrix of dimension mù n, with m, n g 1. Let k À N, 0 g
k g n * 1.

A can be split into two sub-matrices A1 = A(0 : m, 0 : k) and A2 = A(0 : m, k : n). Then

B :=
⇠

A1 A2

⇡

is the horizontally composed matrix of A1 and A2, with

b(i, j) :=
<

a1(i, j) if i < k

a2(i * k, j) if i >= k

and B = A.
Likewise, let l À N, 0 < l < m * 1. A can be split into two sub-matrices A3 = A(0 : l, 0 : n) and

A4 = A(l : m, 0 : n). Then

C :=
H

A3
A4

I

is the vertically composed matrix of A3 and A4, with

c(i, j) :=
<

a3(i, j) if j < l

a4(i, j * l) if j >= l

and C = A.

Given horizontally composed matrices and vertically composed matrices, the concept of matrix com-
position can be extended to four or more matrices, provided their dimensions are compatible.

In order to build the bridge between computer memory, which is 1-dimensional, and matrices as
defined in Definition 1, we define the array-representation of a matrix to be the mapping from a 2-
dimensional matrix to a 1-dimensional array.

Definition 5 (array representation). Let A be an m ù n matrix.
An array r := A of length m ù n is the array representation of A, if ≈i, j : r

n�i+j = a
i,j

As an example,

B :=
H

a0 a1
a2 a3

I

Ÿ B =
�

a0, a1, a2, a3
�

Conversely, an array of length m � n can be interpreted as a matrix of dimensions m ù n or n ù m.

Definition 6 (matrix interpretation). Let r be an array of length m � n.
Then A := r

<
m,n

is the matrix interpretation of r, with

a
i,j

:= r
i�n+j

As simple corollary it follows that the m ù n matrix interpretation of the array representation of an
m ù n matrix is the matrix itself.

Similar to sub-matrices we need the concept of sub-arrays, and their composition.

6

Definition 7 (sub-array). Let R be an array of length n, and let p, q À N with 0 f p < q < n.
Then R(p : q) is a sub-array of R of length q * p, with

R(p : q)
i
= R

i+p, ≈i À {0, ..., q * p * 1}

Conversely, the infix-concatenation of two arrays is defined as follows.

Definition 8 (infix-concatenation). Let P be an array of length p and Q be an array of length q. Let
R := P �Q be the concatenation of P and Q, an array of length p + q.

Then the following holds for R

≈0 f i < p + q : r
i
=

T

p
i

if i < p (3.4a)

q
i*p if i g p (3.4b)

3.2 Transpose

The transpose algorithm, TRIP, is the high-level recursion that is called to actually transpose a matrix.
All other algorithms presented in this chapter are parts thereof.

Algorithm 3.5 defines TRIP. It consists of three cases. Case 3.5a if A is a tall matrix, case 3.5b if A is
wide and case 3.5c, the base case, if A is square.

Definition 9 (TRIP). Let m, n À N, m, n > 0 and A a m ù n matrix (i.e. a matrix with m lines and n

columns).
We define

TRIP(A,m, n) :=

h

n

n

n

n

n

n

n

n

n

n

n

n

l

n

n

n

n

n

n

n

n

n

n

n

n

j

let B = TRIP(A(0 : ‚

m

2 „, 0 : n), ‚m2 „, n) and
let C = TRIP(A(‚m2 „ : m, 0 : n), ‰m2 Â, n) in

let M = merge
`

r

r

r

p

`

r

r

p

B
<
‚

m

2 „,n

C
<
‰

m

2 Â,n

a

s

s

q

, ‚
m

2 „, ‰
m

2 Â, n

a

s

s

s

q

in

M
<
n,m

if m > n (3.5a)

let B = TRIP(A(0 : m, 0 : ‚

n

2„),m, ‚
n

2„) and
let C = TRIP(A(0 : m, ‚

n

2„ : n),m, ‰ n2Â) in

let S = split
0

⇠

B
<
m,‚

n

2 „
C

<
m,‰

n

2 Â

⇡

, ‚
n

2„, ‰
n

2Â,m

1

in

S
<
n,m

if m < n (3.5b)

square_transpose(A, n) if m = n (3.5c)

7

that returns the transpose A
T of A, i.e. an n ù m matrix.

Notice that the definition of in-place, as stated in Chapter 1, stays valid even when applied to sub-
matrices. An array that represents a sub-matrix may not be contiguous in memory, but the transpose of
the sub-matrix will occupy the same memory locations as the original array. Consider the example of
Definition 5. In-place transposing A(0 : 2, 2 : 4) by applying TRIP would result in

A =
`

r

r

r

p

a0 a1 a2 a6
a4 a5 a3 a7
a8 a9 a10 a11

a

s

s

s

q

and
A = (a0, a1,a2,a6, a4, a5,a3,a7, a8, a9, a10, a11)

An e�cient approach to maintaining this property in an implementation is presented in section 3.6.
The following Cilk procedure implements Algorithm 3.5 on a (sub-)matrix A(i0 : i1, j0 : j1). For a

matrix of dimension m ù n the whole matrix is transposed when calling trip(A, 0,m, 0, n).

c i l k void t r i p (A , i0 , i1 , j0 , j1) {
m = i1 * i0 ;
n = j1 * j0 ;
i f ((m = 1) | | (n = 1)) {

re turn ;
} e l s e i f (m = n) {

spawn s q u a r e _ t r a n s p o s e (A , i0 , j0 , 0 , m , 0 , n) ;
re turn ;

} e l s e i f (m > n) {
im = (i1 + i0)_2 ;
spawn t r i p (A , i0 , im , j0 , j1) ;
spawn t r i p (A , im , i1 , j0 , j1) ;
sync ;
spawn merge (A , im * i0 , i1 * im , i0 , i1 , j0 , j1) ;
re turn ;

} e l s e { / / (m < n)

jm = (j1 + j0)_2 ;
spawn t r i p (A , i0 , i1 , j0 , jm) ;
spawn t r i p (A , i0 , i1 , jm , j1) ;
sync ;
spawn s p l i t (A , jm * j0 , j1 * jm , i0 , i1 , j0 , j1) ;
re turn ;

}
re turn ;

}

While it’s not apparent in the definition, this algorithm is highly parallel.
In the code above the recursive calls to TRIP on the sub-matrices of A can be executed in parallel, since all
operations in TRIP, merge and split act only within the bounds of their sub-matrices. The subsequent

8

calls to merge or split (case 3.5a or 3.5b) need to be called in sequence to the recursive calls on TRIP,
since they combine the results of TRIP. Finally, in a concrete implementation of this algorithm, the
matrix interpretation of the resulting array (M<

n,m
or S<

n,m
) is done simply by means of swapping the row

and column count in the meta-data of the matrix.
The following sections describe the sub-routines of TRIP: merge, split, and square_transpose.

3.3 Merge

Calling TRIP recursively on the two sub-matrices of a vertically partitioned, tall (m > n) matrix in-place
transposes these sub-matrices. The subsequent merge call combines these two results, and transforms
the transposed sub-matrices into the transpose of the full matrix.

Algorithm 3.6 defines merge, followed by an example.

Definition 10 (merge). Let R be an array-representation of a (sub-)matrix of dimension m ù n, and
p, q À N with p + q = m.

We define

merge(R, p, q, n) :=

h

n

n

n

l

n

n

n

j

let S = rol(R(‚ n2„p : np + ‚

n

2„q), ‰
n

2Âp) in
let T1 = merge(S(0 : ‚

n

2„(p + q)), p, q, ‚ n2„) and
let T2 = merge(S(‚ n2„(p + q) : n(p + q)), p, q, ‰ n2Â) in
T1 � T2

if n > 1(3.6a)

R if n = 1(3.6b)

that combines the array-representation of two transposed sub-matrices (R) to the array-representation of
the transpose of the vertically composed matrix of these two sub-matrices.

merge consists of two cases, depending on the recursion parameter n. Case 3.6a first rotates the inner
part of array A left, after which merge recurses in parallel on the left and right sub-arrays. Case 3.6b is
the base case of the recursion.

Example TRIP is called on a tall matrix A. merge will be called after the recursive transposition of the
upper and lower half sub-matrices (c.f. Algorithm 3.5). The merge recursion is executed in this example,
showing data movements and the call graph.

A :=

`

r

r

r

r

r

r

p

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15

a

s

s

s

s

s

s

q

TRIP in-place transposes the sub-matrices A(0 : 2, 0 : 3) and A(2 : 5, 0 : 3) in-place, resulting in the
following setup for the subsequent call to merge

9

The merge recursion first rotates the center part of the array, then recursively calls itself. This merges
the two parts of the array, the in-place transpose of the upper sub-matrix (left, blocks of two), and the
in-place transpose of the lower sub-matrix (right, blocks of three). The block-length is set to p and q

to visualize the original position of the elements, and to motivate the name of the procedure. Blocks of
length p and q are “merged” by merge. Highlighted cells indicate moved elements.

The resulting array can be interpreted as AT :

`

r

r

r

p

1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

a

s

s

s

q

= A
T

The following Cilk procedure implements Algorithm 3.6 on a (sub-)matrix A(i0 : i1, j0 : j1), that
has been divided into two sub-matrices with p and q rows each. s0, s1 and n are recursion parameters.
Initially merge is called with s0 = 0 and s1 = (i1* i0) � (j1* j0), i.e. the array boundaries s0 and s1 cover
the whole array-representation of the sub-matrix.

c i l k void merge (A , p , q , i0 , i1 , j0 , j1 , s0 , s1 , n) {
i f (n = 1)

re turn ;

10

r0 = s0 + (n_2) � p ;
r1 = s0 + n � p + (n_2) � q ;
spawn r o l (A(r0 : r1) , (n_2) � p , i0 , i1 , j0 , j1) ;
sync ;

sm = s0 + (n_2) � (p + q) ;
spawn merge (A , p , q , i0 , i1 , j0 , j1 , s0 , sm , (n_2)) ;
spawn merge (A , p , q , i0 , i1 , j0 , j1 , sm , s1 , n * (n_2)) ;
re turn ;

}

While it’s not apparent in the definition, this algorithm is highly parallel.
In the code above the recursive calls to merge on the sub-arrays of S can be executed in parallel, since
all operations in merge act only within the bounds of their sub-arrays. The preceding call to rol needs
to be done in sequence to the recursive calls on merge, since rol modifies parts of both sub-arrays that
are then passed to merge calls.

Summarizing, the procedure merge shu�es groups of elements of two previously transposed, verti-
cally stacked sub-matrices to transform them from being vertically stacked, to be horizontally aligned.
Blocks of the top sub-matrix are moved to the left of the new transposed matrix, blocks of the bottom
sub-matrix are moved to the right of the transposed matrix. In the array representation of the matrix that
corresponds to a perfect shu�e its array blocks.

3.4 Split

Calling TRIP recursively on the two sub-matrices of a horizontally partitioned, wide (m < n) matrix in-
place transposes these sub-matrices. The subsequent split call combines these two results, and trans-
forms the transposed sub-matrices to the transpose of the full matrix.

Algorithm 3.7 defines split. An example illustrates the data-flow after the definition.

Definition 11 (split). Let R be an array-representation of a (sub-)matrix of dimension m ù n, and
p, q À N with p + q = n.

We define

split(R, p, q,m) :=

h

n

n

n

l

n

n

n

j

let S1 = split(R(0 : ‚

m

2 „(p + q)), p, q, ‚m2 „) and
let S2 = split(R(‚m2 „(p + q) : m(p + q)), p, q, ‰m2 Â) in
let T = S1 � S2 in
rol(T (‚m2 „p : mp + ‚

m

2 „q), ‚
m

2 „q)

if m > 1(3.7a)

R if m = 1(3.7b)

that combines the array-representation of two transposed sub-matrices (R) to the array-representation of
the transpose of the horizontally composed matrix of these two sub-matrices.

11

split contains a recursive case and a base case. Unlike merge the left rotation follows after the
recursive calls of split. The symmetry of merge and split is the result of the two functions being
inverse.

Example For this example TRIP is called on a wide matrix A. split will be called after the recursive
transposition of the left and right sub-matrices (c.f. Algorithm 3.5). The split recursion is executed
here, showing data movements and call graph. Highlighted cells indicate moved elements.

A :=
`

r

r

r

p

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

a

s

s

s

q

TRIP in-place transposes the sub-matrices A(0 : 3, 0 : 2) and A(0 : 3, 2 : 5), resulting in the following
setup for the subsequent call to split:

The length of the blocks highlights the original sub-matrix of the elements. The split recursion, when
collapsing the split-tree, rotates the blocks of length q to the right, e�ectively “splitting” p blocks and
q blocks.

12

The resulting array can be interpreted as the transpose of the initial matrix:

`

r

r

r

r

r

r

p

1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

a

s

s

s

s

s

s

q

= A
T

While merge alternates blocks of the sub-matrices to horizontally align them, split separates them,
to transform the horizontally aligned sub-matrices of a wide matrix to vertically stacked sub-matrices of
a tall matrix-transpose.

The following Cilk procedure implements Algorithm 3.7 on a (sub-)matrix A(i0 : i1, j0 : j1), that
has been divided into two sub-matrices with p and q columns each.

c i l k void s p l i t (A , p , q , i0 , i1 , j0 , j1 , s0 , s1 , m) {
i f (m = 1)

re turn ;

sm = s0 + (m_2) � (p + q) ;
spawn s p l i t (A , p , q , i0 , i1 , j0 , j1 , s0 , sm , (m_2)) ;
spawn s p l i t (A , p , q , i0 , i1 , j0 , j1 , sm , s1 , m * (m_2)) ;
symc ;

r0 = s0 + (m_2) � p ;
r1 = s0 + m � p + (m_2) � q ;
spawn r o l (A(r0 : r1) , (m_2) � q , i0 , i1 , j0 , j1) ;
re turn ;

}

As with merge, this algorithm is highly parallel.
In the code above the recursive calls to split on the sub-arrays of R can be executed in parallel, since
all operations in split act only within the bounds of their sub-arrays. The subsequent call to rol needs
to be done in sequence to the recursive calls on split, since rol modifies parts of both sub-arrays.

The next section describes the base case of TRIP, a transposition algorithm for square matrices.

3.5 Square Transpose

This novel, highly parallel algorithm is the base case of the TRIP recursion. Like TRIP it is recursive in
nature, and in-place transposes square matrices.

Definition 12 (swap). Let A be a square matrix of dimension n ù n.
We define

swap(A, i0, i1, j0, j1) := B where b(j * j0, i * i0) = a(i, j),≈j À {j0, ...j1}, i À {i0, ..., i1}

13

that returns a matrix of dimension j1 * j0 ù i1 * i0 that is the sub-matrix A(i0 : i1, j0 : j1), but mirrored
across the diagonal.

Using this, we define algorithm square_transpose.

Definition 13 (square_transpose). Let A be a square matrix of dimension n ù n.
We define

sq(A, i0, i1, j0, j1) :=

h

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

l

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

j

let i
m
= ‚

i0+i1
2 „ and

let j
m
= ‚

j0+j1
2 „ in

let B = sq(A, i0, im, j0, jm) and
let C = sq(A, i0, im, jm, j1) and
let D = sq(A, i

m
, i1, j0, jm) and

let E = sq(A, i
m
, i1, jm, j1) in

H

B C

D E

I

if i1 * i0 > 1 · i1 < j0 (3.8a)

let i
m
= ‚

i0+i1
2 „ and

let j
m
= ‚

j0+j1
2 „ in

let B = sq(A, i0, im, j0, jm) and
let C = sq(A, i0, im, jm, j1) and
let D = swap(A, j0, jm, im, i1) and
let E = sq(A, i

m
, i1, jm, j1) in

H

B C

D E

I

if i1 * i0 > 1 · i1 g j0 (3.8b)

swap(A, j0, jm, im, i1) else (3.8c)

that returns the transposed matrix of square-matrix A.

This recurses to single rows and a maximum number of two columns swaps those entries with the
corresponding entries below the diagonal, and returns.

The algorithm consists of two cases and a base case.
Case 3.8a is met for sub-matrices that are fully above the diagonal ofA. In this case the algorithm recurses
all the way to the base case 3.8c, and swaps the elements with those below the diagonal. Case 3.8b is met
for sub-matrices that are on or below the diagonal, including the root call of square_transpose, where
the sub-matrix is A itself. Here, the upper-left, upper-right and lower-right sub-matrices are treated as in
Case 3.8a, i.e. the algorithm recurses all the way to the base case, where the elements are swapped. The
lower-left sub-matrix however is swapped directly.

14

When implemented in an imperative language, this distinction between Cases 3.8a and Case 3.8b
disappears, since a single “swap” can modify both entries: the one above the diagonal, and the one below
the diagonal.

The following Cilk procedure implements Algorithm 3.8 on a (sub-)matrix A of dimension i1 * i0 ù
j1 * j0.

c i l k s q u a r e _ t r a n s p o s e (A , i0 , i1 , j0 , j1) {
i f (i1 * i0 > 1) {

im = (i0 + i1)_2 ;
jm = (j0 + j1)_2 ;
spawn s q u a r e _ t r a n s p o s e (A , i0 , im , j0 , jm) ;
spawn s q u a r e _ t r a n s p o s e (A , i0 , im , jm , j1) ;
spawn s q u a r e _ t r a n s p o s e (A , im , i1 , jm , j1) ;
i f (i1 f j0)

spawn s q u a r e _ t r a n s p o s e (A , im , i1 , j0 , jm) ;
} e l s e {

f o r (j = j0 ; j < j1 ; j++) {
swap (A[j, i0] , A[i0, j]) ;

}
}

}

The square matrix A is recursively split into sub-matrices, until, in the base case, the sub-matrix
contains only one or two elements. Entries of sub-matrices above the diagonal are swapped with entries
below the diagonal in the base case. Since the base case is only called for entries above the diagonal, all
recursive calls are independent of each other. This means for each recursion, the parallelism increases by
a factor of three to four.

Any e�cient, parallel, in-place square transpose algorithm can be used at this place, and TRIP will
work.

All presented algorithms have to accept sub-matrices as input. The relative ine�ciency of modulo
and divide operations in comparison to addition or multiplication makes index calculations relevant in
this context. The next section will describe iterators that are key to an e�cient implementation of TRIP.

3.6 Iterators

Iterators e�ciently calculate the index of consecutive entries of a sub-matrix, in the index-system of the
original matrix, as opposed to a simple mapping.

For a matrix A
M ,N

and a sub-matrix A(i0 : i1, j0 : j1) this mapping from sub-matrix array indices to
matrix array indices could be achieved by the mapping

i ô
�

i0 + ‚i_N
s
„

�

�N + j0 + (i mod N
s
)

where N
s
= j1 * j0 is the second dimension of the sub-matrix. While simple, this mapping involves

the operations division and modulo. Since implementations of the discussed algorithms make heavy use

15

of sub-matrices, iterators, as an e�cient method to transform the index systems of sum-matrices to the
index systems of their original matrices, are necessary:

Iterators depend on an internal state, in this case the variable count, that keeps track of the position
inside the sub-matrix, and triggers an index-jump into the next row of the original matrix, if necessary.
Using iterators instead of a naive mapping decreases the computational time needed for index calculations
dramatically.

The forward iterator for sub-matrix A(i0 : i1, j0 : j1) updates i, an index of A, to point to the next
element in the sub-matrix.

n e x t (� i , � count , j0 , j1 , N , Ns) {
i f (� c o u n t == Ns * 1) {

� c o u n t = 0 ;
� i += (N * j1) + j0 + 1 ;

} e l s e {
� c o u n t += 1 ;
� i += 1 ;

}
}

The corresponding reverse iterator, which updates i to the index of the previous element of A(i0 :
i1, j0 : j1) within A is based on the same principle:

p rev (� i , � count , j0 , j1 , N , Ns) {
i f (� c o u n t == 0) {

� c o u n t = Ns * 1 ;
� i *= j0 + (N * j1) + 1 ;

} e l s e {
� c o u n t *= 1 ;
� i *= 1 ;

}
}

The next chapter provides proofs of correctness for algorithms: TRIP, merge, and split.
The full implementation of TRIP can be found in Appendices 1 and 2 in the form of Cilk code that

can be complied with e.g. gcc-7.3.

16

4 Proof of Correctness

A proof of the correctness of algorithm TRIP is presented in this chapter. It consists of three parts. The
first part (Section 4.1) proves the correctness of the merge algorithm (see 3.3). The second part (Sec-
tion 4.2) proves the correctness of the split algorithm (see 3.4). The third part (Section 4.3) integrates
the first two parts and proves correctness of the TRIP recurrence as a corollary.

4.1 Correctness Proof of Combine Method merge

In this section we prove correctness of the merge algorithm for tall matrices of dimension M ùN with
M > N . We prove that given two vertically aligned sub-matrices T

p
and T

q
that are in-place transposes

of sub-matrices that partition A, merge will combine these two sub-matrices to form A
Ò.

The first part of this section introduces the structure of the input of merge. The second part consists
of theorem and proof.

In TRIP two sub-matrices of a matrix A always partition that matrix. Specifically, for all p, q > 0 with
p + q = M , A can be partitioned like this

A =

`

r

r

r

r

r

r

r

r

p

A
p

A
q

´Ø¨

N

a

s

s

s

s

s

s

s

s

q

i

n

m

n

k

p

i

n

m

n

k

q

The transpose A
Ò of A is made up of the transposes of these sub-matrices as well and has the shape

A
Ò =

`

r

r

r

p

A
Ò

p

´Ø¨

p

A
Ò

q

´Ø¨

q

a

s

s

s

q

i

n

m

n

k

N

i.e.
AÒ =

«

0fi<N
⇠⇠

AÒ

p

⇡

i

�
⇠

AÒ

q

⇡

i

⇡

(4.1)

where
«

0fi<k
A
i
= A0 � A1 �… � A

k*1

17

is the prefix concatenation operator, and � is the infix concatenation operator:
�

a0,… , a
m

�

�
�

b0,… , b
n

�

=
�

a0,… , a
m
, b0,… , b

n

�

⇠

A
p

⇡

i

is the i-th subarray of array-size p of the array representing matrix A
p
. For example if

A2 =
H

4 5 9
10 14 15

I

then
⇠

A2

⇡

0
= (4, 5),

⇠

A2

⇡

1
= (9, 10) and

⇠

A2

⇡

2
= (14, 15).

merge is not applied directly to A (i.e. to A
p

and A
q
) though. Since A is a tall matrix, TRIP (Al-

gorithm 3.5) recursively applies itself to A
p
= A(0 : ‚

M

2 „, 0 : N) and A
q
= A(‰M2 Â : M , 0 : N),

returning a matrix that is composed of two in-place transposed sub-matrices. After the in-place trans-
position of A

p
and A

q
merge combines the result. In-place transposed sub-matrices can be written as

reshaped transposes T
p

and T
q

where T
p

is the p ùN matrix that fulfills

T
p
= AÒ

p

and T
q

is the q ùN matrix that fulfills
T
q
= AÒ

q

Applying TRIP to A
p

and A
q

results in a matrix T of dimension (p + q) ùN with

T =

`

r

r

r

r

r

r

r

r

p

T
p

T
q

Ǿ̈

N

a

s

s

s

s

s

s

s

s

q

i

n

m

n

k

p

i

n

m

n

k

q

i.e., T is composed as follows:

T = T
p
� T

q
= AÒ

p
� AÒ

q
=

«

0fi<N
⇠

AÒ

p

⇡

i

�
«

0fi<N
⇠

AÒ

q

⇡

i

(4.2)

merge transforms T into A
Ò: In order to derive AÒ (Equation 4.1) from T , merge “merges” T

p
and

T
q
, i.e. it intertwines consecutive sub-arrays of AÒ

p
and AÒ

q
in T .

Lemma 1. ≈M ,N À N,≈p, q > 0 with p + q = M

Let A be a matrix of dimension M ùN , and T
p
= AÒ

p
, T

q
= AÒ

q
, T = T

p
� T

q
.

Then

merge(T , p, q,N) = AÒ

Proof. We prove this for all N by assuming arbitrary but fixed M , p, q À N with p + q = M and A a
matrix with dimensions M ùN , and performing induction over N .

18

Base Case N = 1. N is the number of columns in A, and due to Equation 4.2 also the number of
sub-array-pairs in T , i.e. pairs

⇠

AÒ

p

⇡

i

,

⇠

AÒ

q

⇡

i

, ≈i À 0,… ,N * 1.
Due to equations 4.2 and 4.1, and merge matching the base case, we have

T =
⇠

AÒ

p

⇡

0
�
⇠

AÒ

q

⇡

0
= AÒ

p
� AÒ

q
=

«

0fi<N
⇠⇠

AÒ

p

⇡

i

�
⇠

AÒ

q

⇡

i

⇡

= AÒ

which proves the base case.

Induction Hypothesis Let N0 g 1 be arbitrary but fixed. We assume for all k f N0

merge(T , p, q, k) = AÒ

Induction Step When calling merge(T , p, q,N0 + 1), we have

T =
«

0fi<N0+1

⇠

AÒ

p

⇡

i

�
«

0fi<N0+1

⇠

AÒ

q

⇡

i

Since N0 + 1 > 1 this matches the second case of the recursion.
The first operation in this case is rol(T (‚N0+1

2 „p : (N0 + 1)p + ‚

N0+1
2 „q), ‰N0+1

2 Âp) which results in

T =
«

0fi<‚N0+1
2 „

⇠

AÒ

p

⇡

i

�
«

0fi<‚N0+1
2 „

⇠

AÒ

q

⇡

i

�
«

‚

N0+1
2 „fi<N0+1

⇠

AÒ

p

⇡

i

�
«

‚

N0+1
2 „fi<N0+1

⇠

AÒ

q

⇡

i

Second, we apply merge(T (0 : ‚

N0+1
2 „(p + q)), p, q, ‚N0+1

2 „). This allows to use the induction hy-
pothesis, since the subarray T (0 : ‚

N0+1
2 „(p+ q)) has the correct shape and the number of subarray-pairs

is ‚N0+1
2 „ f N0. Thus

T =
«

0fi<‚N0+1
2 „

⇠⇠

AÒ

p

⇡

i

�
⇠

AÒ

q

⇡

i

⇡

�
«

‚

N0+1
2 „fi<N0+1

⇠

AÒ

p

⇡

i

�
«

‚

N0+1
2 „fi<N0+1

⇠

AÒ

q

⇡

i

When (in parallel) applying merge(T (‚N0+1
2 „(p + q) : (N0 + 1)(p + q)), p, q, ‰N0+1

2 Â), the induction
hypothesis can be used again, since the subarray T (‚N0+1

2 „(p + q) : (N0 + 1)(p + q)) too has the correct
shape and ‰

N0+1
2 Â f N0. Now

T =
«

0fi<‚N0+1
2 „

⇠⇠

AÒ

p

⇡

i

�
⇠

AÒ

q

⇡

i

⇡

�
«

‚

N0+1
2 „fi<N0+1

⇠⇠

AÒ

p

⇡

i

�
⇠

AÒ

q

⇡

i

⇡

=
«

0fi<N0+1

⇠⇠

AÒ

p

⇡

i

�
⇠

AÒ

q

⇡

i

⇡

= AÒ

as can be seen by comparison with equation 4.1.

The next section contains the correctness proof of split. Since merge and split are inverse to each
other, the proofs are similar.

19

4.2 Correctness Proof of Combine Method split

In this section we prove correctness of the split algorithm for wide matrices of dimension M ùN with
M < N . We prove that given two horizontally aligned sub-matrices T

p
and T

q
that are in-place transposes

of sub-matrices that partition A, split will combine these two sub-matrices to form A
Ò.

The first part of this section introduces the structure of the input of split. The second part consists
of theorem and proof.

Again, TRIP calls split on sub-matrices of A that partition A. Specifically, with p, q > 0 and
p + q = N it can be partitioned like this

A =
`

r

r

r

p

A
p

Ǿ̈

p

A
q

´Ø¨

q

a

s

s

s

q

i

n

m

n

k

M

The transpose A
Ò of A is made up of the transposes of these sub-matrices as well, and has the shape

A
Ò =

`

r

r

r

r

r

r

r

r

p

A
Ò

p

A
Ò

q

´Ø¨

M

a

s

s

s

s

s

s

s

s

q

i

n

m

n

k

p

i

n

m

n

k

q

i.e.

AÒ = AÒ

p
� AÒ

q
=
H

«

0fi<M
⇠

AÒ

p

⇡

i

I

�

H

«

0fi<M
⇠

AÒ

q

⇡

i

I

(4.3)

split is not applied directly to A (i.e. to A
p

and A
q
). Since A is a wide matrix, TRIP (Algorithm 3.5)

recursively applies itself to A
p
= A(0 : M , 0 : ‚

N

2 „) and A
q
= A(0 : M , ‰

N

2 Â : N), returning a matrix
that is composed of two in-place transposed sub-matrices. After the in-place transposition of A

p
and A

q
,

split combines the result. In-place transposed sub-matrices can be written as reshaped transposes T
p

and T
q

where T
p

is the M ù p matrix that fulfills

T
p
= AÒ

p

and T
q

is the M ù q matrix that fulfills
T
q
= AÒ

q

Applying TRIP to A
p

and A
q

results in a matrix T of dimension m ù (p + q) with

T =
`

r

r

r

p

T
p

Ǿ̈

p

T
q

Ǿ̈

q

a

s

s

s

q

i

n

m

n

k

M

20

or in array representation

T =
«

0fi<M
⇠⇠

T
p

⇡

i

�
⇠

T
q

⇡

i

⇡

=
«

0fi<M
⇠⇠

AÒ

p

⇡

i

�
⇠

AÒ

q

⇡

i

⇡

(4.4)

or expanded:
T =

⇠

AÒ

p

⇡

0
�
⇠

AÒ

q

⇡

0
�
⇠

AÒ

p

⇡

1
�
⇠

AÒ

q

⇡

1
�… �

⇠

AÒ

p

⇡

M*1
�
⇠

AÒ

q

⇡

M*1

split transforms T intoAÒ: In order to deriveAÒ (equation 4.3) from T , split “splits” (i.e. separates)
sub-arrays of AÒ

p
and AÒ

q
in T .

Lemma 2. ≈M ,N À N,≈p, q > 0 with p + q = N

Let A be a matrix of dimension M ùN , and T
p
= AÒ

p
, T

q
= AÒ

q
, and

T =
«

0fi<M
⇠⇠

T
p

⇡

i

�
⇠

T
q

⇡

i

⇡

as described in Equation 4.4. Then

split(T , p, q,M) = AÒ

Proof. We prove this for all M by assuming arbitrary but fixed N , p, q À N with p + q = N and A a
matrix with dimensions M ùN , and performing induction over M .

Base Case M = 1, where M is the number of rows in A, and due to Equation 4.4 also the number of
sub-array-pairs in T , i.e. pairs

⇠

AÒ

p

⇡

i

,

⇠

AÒ

q

⇡

i

, ≈i À 0,… ,M * 1.
Due to equation 4.4 and split matching the base case, we have

T =
⇠

AÒ

p

⇡

0
�
⇠

AÒ

q

⇡

0
= AÒ

p
� AÒ

q
=

«

0fi<k
⇠

AÒ

p

⇡

i

�
«

0fi<k
⇠

AÒ

q

⇡

i

= AÒ

which proves the base case.

Induction Hypothesis Let M0 > 1 be arbitrary but fixed. We assume for all k f M0

split(T , p, q, k) = AÒ

Induction Step When calling split(T , p, q,M0 + 1), we have

T =
«

0fi<M0+1

⇠⇠

AÒ

p

⇡

i

�
⇠

AÒ

q

⇡

i

⇡

Since M0 + 1 > 1 this matches the second case of the recursion.
The first operation in this case is split(T (0 : ‚

M0+1
2 „(p+ q)), p, q, ‚M0+1

2 „). The induction hypothesis
holds, since the subarray T (0 : ‚

M0+1
2 „(p + q)) has the correct shape and the number of subarray-pairs

is ‚M0+1
2 „ f M0. Thus

T =
«

0fi<‚M0+1
2 „

⇠

AÒ

p

⇡

i

�
«

0fi<‚M0+1
2 „

⇠

AÒ

q

⇡

i

�

`

r

r

r

p

«

‚

M0+1
2 „fi<M0+1

⇠⇠

AÒ

p

⇡

i

�
⇠

AÒ

q

⇡

i

⇡

a

s

s

s

q

21

When in parallel applying split(T ‚M0+1
2 „(p+q) : (M0 +1)(p+q), p, q, ‰M0+1

2 Â) the induction hypothesis
can be used again, since the subarray T (‚M0+1

2 „(p + q) : (M0 + 1)(p + q)) has the correct shape and the
number of subarray-pairs is ‰M0+1

2 Â f M0. After this step

T =
«

0fi<‚M0+1
2 „

⇠

AÒ

p

⇡

i

�
«

0fi<‚M0+1
2 „

⇠

AÒ

q

⇡

i

�
«

‚

M0+1
2 „fi<M0+1

⇠

AÒ

p

⇡

i

�
«

‚

M0+1
2 „fi<M0+1

⇠

AÒ

q

⇡

i

(4.5)

Second, we apply rol(T (‚M0+1
2 „p : (M0 + 1)p + ‚

M0+1
2 „q), ‚M0+1

2 „q). This swaps the two middle
parts of T in equation 4.5.

Thus finally we have

T =
«

0fi<‚M0+1
2 „

⇠

AÒ

p

⇡

i

�
«

‚

M0+1
2 „fi<M0+1

⇠

AÒ

p

⇡

i

�
«

0fi<‚M0+1
2 „

⇠

AÒ

q

⇡

i

�
«

‚

M0+1
2 „fi<M0+1

⇠

AÒ

q

⇡

i

=
H

«

0fi<M0+1

⇠

AÒ

p

⇡

i

I

�

H

«

0fi<M0+1

⇠

AÒ

q

⇡

i

I

= AÒ

as can be seen by comparison with equation 4.3.

The next section contains the correctness proof of TRIP, which follows from the correctness of merge

and split.

4.3 Correctness Proof of TRIP

The last two sections proved the correctness of the combine methods of TRIP, depending on whether the
matrix that is transposed is wide or tall. This section proves the correctness of TRIP itself, using the
previous results.

Theorem 1. For all matrices A with dimension M ùN:

TRIP(A,M ,N) = A
Ò

Proof. Proceed by induction on the number of elements E := M �N of matrix A.

Base Case E = 1. The matrix contains one element and is of dimension 1 ù 1. This means it is square
and

TRIP(A, 1, 1) = sq(A, 0, 1, 0, 1) = A = A
Ò

Induction Hypothesis Take E0 arbitrary but fixed, for all matrices with dimension M ùN such that
M �N f E0 and assume

TRIP(A,M ,N) = A
Ò

22

Induction Step Matrix A is of dimension M ùN and has E0 + 1 elements, i.e., M �N = E0 + 1. We
proceed by case distinction on whether the A is square, wide or tall.

Case M = N The matrix is square, and we have

TRIP(A,M ,N) = sq(A, 0,M , 0,N) = A
Ò

Case M > N The matrix is tall and TRIP matches Case 3.5a, i.e., A is divided in two sub-matrices
with dimensions p ùN and q ùN . Since p �N f E0 and q �N f E0, the induction hypothesis can be
applied to both cases. Due to Lemma 1, merge subsequently combines the results to A

Ò.

Case M < N The matrix is wide and TRIP matches Case 3.5b, i.e. A is divided in two sub-matrices
with dimensions M ù p and M ù q with p = ‚

N

2 „ and q = ‰

N

2 Â. TRIP is applied to both sub-matrices.
Since M �p f E0 and M �q f E0 the induction hypothesis can be applied to both cases. Due to Lemma 2,
split subsequently combines the results to A

Ò.

This concludes the correctness proof of TRIP. The next chapter analyzes the computational complexity
of TRIP by counting work, span and parallelism in the special case of matrices, whose dimensions are
powers of two.

23

5 Complexity Analysis

The complexity analysis of TRIP consists of four parts: First the analysis of work W0, second the analysis
of span Wÿ; the third part is an analysis of the parallelism of the algorithm, and finally, the chapter is
concluded by visualizing work and span as a function of the shape of the matrix and interpreting the
resulting curves.

The complexity analysis of TRIP is deliberately restricted to matrices A
M ,N

whose dimensions M

and N are for simplicity powers of two. Tall matrices A
M ,N

as well as wide matrices A
N ,M

thus fulfill
the following condition:

�

«k À N : N = 2k
�

·
�

«l À N : M = 2lN
�

(5.1)

TRIP behaves specially when called on matrices with an aspect ratio that is a power of two: If the
matrix in question is tall, the recursion keeps entering merge (Case 3.5a), until the sub-matrices become
square (Case 3.5c). If the matrix is wide, the recursion keeps entering split (Case 3.5b) until the sub-
matrices become square. This allows to calculate closed form solutions of work and span, since it leads
to a high degree of symmetry in the recursive calls.

The following section introduces work W1 and analyzes the work of TRIP and its underlying algo-
rithms.

5.1 Work

In this section, after a brief definition of the work of a computation, Lemmas 3 and 4 cover the work of al-
gorithms reverse and rol, which are the basis of all following calculations. After that, Theorem 2 shows
that the transpose of a tall matrix A with dimensions M ù N has work ⇥

⇠

MN

⇠

1 + log M

N
logN

⇡⇡

,
provided M and N fulfill Condition 5.1. Corollary 1 generalizes this result to wide and square matrices.

In the context of the dag model described in [5, p.777�], the work W1 is defined as the number of
vertices in a computation dag. Our analysis considers as vertices instruction-groups, i.e.

• inner nodes in a spawned tree structure, and

• swaps.

Each inner node in a recursive call tree, which most of the time amounts to about three actual function
calls, is considered one unit of work, as is a swap of two array entries.

The work analysis of two algorithms that form the base of TRIP is a good introduction to the general
principles applied throughout this section.

24

Work of Base Algorithms

The work complexity of reverse and rol depends on the applied algorithms. The following Cilk algo-
rithms are used in this thesis.

In order to achieve parallelism, the array reversal algorithm is recursive in nature. Slice A(m0 : m1)
is reversed, l is initialized with (m1 * m0)_2 and is the recursion parameter.

c i l k r e v e r s e (A , m0 , m1 , l) {
i f (l > 1) {

lm = l_2 ;
spawn r e v e r s e (A , m0 , m1 , lm) ;
spawn r e v e r s e (A , m0 + lm , m1 * lm , l * lm) ;

} e l s e {
swap (A , m0 , m1 * 1) ;

}
}

To rotate array A we apply Jon Bentley’s reversal trick [1, p. 14].

c i l k r o l (A , n , k) {
spawn r e v e r s e (a , 0 , k) ;
spawn r e v e r s e (a , k , n) ;
sync ;
spawn r e v e r s e (a , 0 , n) ;

}

Since this complexity analysis is restricted to matrices which dimensions are powers of two, the work
of reverse only needs to be known for arrays of even length.

Lemma 3 (Work of reverse). If length n = m1 * m0 of array A is even, then

W
reverse

1 (n) = n * 1

Proof. The work consists of inner nodes in call-trees and swaps; we first count function calls and then
the number of swaps.

reverse is called with recursion parameter l = n_2 and has base case l = 1. That means the binary
tree that is spawned by this recursive algorithm has n_2* 1 inner nodes, which corresponds to a work of
n_2 * 1 that is required for function calls.

Each leaf of the call tree calls ‘swap’ once, which amounts to one unit of work per leaf, i.e. n_2 units
of work in total, for swapping.

Summing up work for tree spawning (function calls) and swapping results in work

W
reverse
1 (n) = n

2 * 1 + n

2 = n * 1

Work of rol is calculated for half-rotations. This is because array rotations in TRIP depend on the
number of rows/columns p and q of the sub-matrices, into which a rectangular matrix is divided. Condi-
tion 5.1 results in those divisions being symmetrical, i.e. p = q in this complexity analysis.

25

Lemma 4 (Work of rol). If length n of array A is even, then the work of rol(n, n_2) is

W
rol

1 (n, n_2) = 2n * 3

Proof. rol consists of three reversals of lengths n_2, n_2 and n.
According to Lemma 3 the first two reversals contribute n_2 * 1 units of work each, and the last

reversal contributes n * 1 units of work.
Since rol is not a recursive algorithm, there is no call tree whose inner nodes need to be counted.

Summing up all work contributions results in

W
rol
1 (n, n_2) = 2

⇠

n

2 * 1
⇡

+ (n * 1) = 2n * 3

Both Lemmas will be used when deriving the work complexity of TRIP.

Work of TRIP

Theorem 2 will derive the work of TRIP under constraint 5.1. Since TRIP, merge and split are symmet-
rical w.r.t. the two dimensions of a matrix save for the order of the operations, it su�ces to calculate the
work of calling TRIP on a tall matrix. The work of transposing A

M ,N
is equal to the work of transposing

A
N ,M

.
The total work consists of

1. spanning the divide tree

2. combining the nodes via merge/split (itself recursive procedures)

3. square-transposing in the leaf nodes

Theorem 2 (Work of TRIP for tall matrices). Let A
M ,N

be a tall matrix that satisfies Condition 5.1.

Then

W
TRIP
1 (M ,N) = ⇥

⇠

MN

⇠

1 + log M

N
logN

⇡⇡

Proof. Begin by counting the number of inner nodes in the divide tree.

Spanning the divide tree First consider the number of inner nodes in the call tree.
The recursion parameter of transpose is m, starting with m0 = M , the number of rows in the matrix

(or sub-matrix). From the definition of TRIP and Condition 5.1, it follows that

≈
0fi<log M

N

m
i+1 = m

i
_2

The base case of the transpose recursion is m = N , which means the sub-matrix is square. As a binary
tree, the transpose-tree has log M

N
levels, M

N
leaves, and M

N
* 1 inner nodes.

26

Combining the nodes via merge The number of inner nodes at level i is 2i. So at each level merge is
called 2i times. The parameterization of merge is di�erent for each level.

At level 0 merge(m0_2,m0_2,N) is called. At level 1 merge(m1_2,m1_2,N) is called, etc.
In general, at level i merge(m

i
_2,m

i
_2,N) is called. Since m0 = M , in general m

i
_2 = M2*(i+1)

which results in the following equation for the work of TRIP:

W
TRIP
1 (M ,N) = M

N
* 1

Ǿ̈

of inner nodes

+
…

0fi<log M

N

2iW merge
1

�

p
i
, q

i
,N

�

≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

combine e�ort

(5.2)

+ M

N
W

square
1 (N)

≠́≠≠≠≠≠≠Ø≠≠≠≠≠≠≠̈

work in leaves of transpose tree (square_transpose)

So the combine e�ort at level i of the TRIP tree are 2i merge calls with parameters p
i
= q

i
= m

i
_2 =

M2*(i+1) and recursion parameter n with n0 = N . The base case of merge is met when n
j
= 1 for some

j. Condition 5.1 ensures that N is a power of 2, and hence repeatably divisible by two without remainder.
Consequently, the binary call-tree of every merge call has logN levels and exactly N * 1 inner nodes.
Contrary to the transpose tree, the base case of a merge tree does not cause work, all work is done in inner
nodes. The recursion parameter n, as hinted above, takes the values n0 = N , n1 = n0_2, n2 = n1_2 and
so on. In general n

j+1 = n
j
_2, i.e. n

j
= N2*j for 0 f j < logN . Given the symmetry of the merge tree

(which is based upon Condition 5.1) there are 2j inner nodes at level j of any merge tree.
Summing up the results within the previous paragraph

W
merge
1

�

p
i
, q

i
,N

�

= N * 1
Ǿ̈

of inner nodes

+
…

0fj<logN
2jW rol

1

0

n
j

2 p
i
+

n
j

2 q
i
,

n
j

2 p
i

1

≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

work within inner nodes of the merge tree

(5.3)

Since p
i
= q

i
= M2*(i+1) and n

j
= N2*j

W
rol
1

0

n
j

2 p
i
+

n
j

2 q
i
,

n
j

2 p
i

1

= W
rol
1

0

n
j

2 (p
i
+ q

i
),
n
j

2 p
i

1

= W
rol
1

0

n
j

2
�

M2*(i+1) +M2*(i+1)
�

,

n
j

2 M2*(i+1)
1

= W
rol
1

0

n
j
M2*(i+1),

n
j

2 M2*(i+1)
1

= W
rol
1

0

N2*jM2*(i+1), N2*j
2 M2*(i+1)

1

= W
rol
1

⇠

NM2*i*j*1, 12NM2*i*j*1
⇡

Lemma 4 states for even n:

27

W
rol
1 (n, n_2) = 2n * 3

NM2*i*j*1 is even, so

W
rol
1

0

n
j

2 p
i
+

n
j

2 q
i
,

n
j

2 p
i

1

= W
rol
1

⇠

NM2*i*j*1, 12NM2*i*j*1
⇡

= NM2*i*j * 3

Plug this in Equation 5.3 to get

W
merge
1 (p

i
, q

i
,N) = N * 1 +

…

0fj<logN
2jW1

0

rol
0

n
j

2 p
i
+

n
j

2 q
i
,

n
j

2 p
i

11

= N * 1 +
…

0fj<logN
2j

�

NM2*i*j * 3
�

= N * 1 +
…

0fj<logN
�

NM2*i * 3 � 2j
�

= N * 1 + log (N)NM2*i * 3
…

0fj<logN
2j

= N * 1 + log (N)NM2*i * 3(N * 1)
= log (N)NM2*i * 2(N * 1)

Plugging this in Equation 5.2 results in

W
TRIP
1 (M ,N) =

⇠

M

N
* 1

⇡

+
…

0fi<log M

N

2iW merge
1 (p

i
, q

i
,N) + M

N
W

square
1 (N) (5.4)

=
⇠

M

N
* 1

⇡

+
…

0fi<log M

N

2i
�

log (N)NM2*i * 2(N * 1)
�

+ M

N
W

square
1 (N)

=
⇠

M

N
* 1

⇡

+
⇠

log M

N
log (N)NM * 2(N * 1)

⇠

M

N
* 1

⇡⇡

+ M

N
W

square
1 (N)

= (*2N + 3)
⇠

M

N
* 1

⇡

+
⇠

MN log M

N
logN

⇡

+ M

N
W

square
1 (N)

Work of square transpose The work of square_transpose(N) consists of spanning the recursion-
tree and swapping the non-diagonal entries. The number of spanned sub-trees in each inner node of the
recursion depends on the position of the associated sub-matrix within the square matrix and is either three
or four. This paragraph contains a derivation of an asymptotically tight upper and lower bound for the
work complexity of square_transpose.

First asymptotically determine the number of inner nodes of the tree. The tree spans the upper right
triangular part of the matrix, including the diagonal, so there are N(N +1)_2 leaves. The following will
show that for any arity of the tree, be it three or four, the number of inner nodes of said tree is ⇥(N2).

28

A ternary tree with N(N + 1)_2 leaves has ‰log3(N(N + 1)_2)Â levels. The number of inner nodes
of such a tree is

‰log3(N(N+1)_2)*1Â
…

i=0
3i

For big N approximate ‰log3(N(N + 1)_2) * 1Â by log3(N(N + 1)_2) * 1. Since

m
…

k=0
3i = 1

2
�

3m+1 * 1
�

the number of inner nodes of the tree is

log3(N(N+1)_2)*1
…

i=0
3i = 1

2
�

3log3(N(N+1)_2) * 1
�

= N(N + 1)
4 * 1

2 = ⇥(N2)

A quaternary tree with N(N+1)_2 leaves has ‰log4(N(N+1)_2)Â levels. The number of inner nodes
of such a tree is

‰log4(N(N+1)_2)*1Â
…

i=0
4i

For big N approximate ‰log4(N(N + 1)_2) * 1Â by log4(N(N + 1)_2) * 1. Since

m
…

k=0
4i = 1

3
�

4m+1 * 1
�

the number of inner nodes of the tree is

log4(N(N+1)_2)*1
…

i=0
4i = 1

3
�

4log4(N(N+1)_2) * 1
�

= N(N + 1)
6 * 1

3 = ⇥(N2)

In any combination of cases that are matched during the recursion of square_transpose the work
of spanning the tree is ⇥(N2).

The work of swapping the elements occurs in the leaves of the tree. All elements above but excluding
the diagonal need to be swapped with elements below the diagonal, i.e. N(N *1)_2 swaps transpose the
matrix.

In total the work for spanning the transpose tree and swapping is

W
square
1 (N) = ⇥(N2) +N(N * 1)_2 = ⇥(N2)

Plugged into equation 5.4 this results in

W
TRIP
1 (M ,N) = (*2N + 3)

⇠

M

N
* 1

⇡

+
⇠

MN log M

N
logN

⇡

+ M

N
W

square
1 (N) (5.5)

= (*2N + 3)
⇠

M

N
* 1

⇡

+
⇠

MN log M

N
logN

⇡

+ M

N
⇥(N2)

This simplifies to

29

W
TRIP
1 (M ,N) = ⇥

⇠

M +MN log M

N
logN +MN

⇡

= ⇥
⇠

MN

⇠

1 + log M

N
logN

⇡⇡

This result can be generalized, to also holds for wide matrices:

Corollary 1 (Work of TRIP). Let A
M ,N

be a tall, wide or square matrix that satisfies Condition 5.1.

Then

W
TRIP
1 (M ,N) = ⇥

0

MN

0

1 + log max(M ,N)
min(M ,N) logmin(M ,N)

11

Proof. The TRIP recursion is analogous for tall and wide matrices, furthermore merge and split call
rol with the same arguments (under Constraint 5.1 p = q and ‰

m

2 Â = ‚

m

2 „ on the respective levels in the
merge/split-tree). The only di�erence between applying TRIP to a tall or a wide matrix occurs inside
merge and split: In merge rol is called before the recursive merge call, in split rol is called after
the recursive call. This di�erence does not cause a change in the amount of work of TRIP.

The next section contains the derivation of the asymptotic span of TRIP.

5.2 Span

In this section, after a brief definition of the span of a computation, Lemmas 5 and 6 cover the span of
the algorithms reverse and rol. After that, Theorem 3 shows, that the transpose of a tall matrix A

M ,N

has span
W

TRIP
ÿ (M ,N) = ⇥

⇠

log M

N
log2N + log2 M

N
logN

⇡

provided M and N fulfill Condition 5.1. Corollary 2 generalizes this result to wide and square matrices.
In the context of the dag model described in [5, p.777�], the span Wÿ is defined as the longest path in

a computation dag. In practical terms it can be interpreted as the number of instructions of an algorithm
that need to be executed in serial, even if infinitely many processors were available. This analysis does
not count single instructions, but instruction-groups. Like in the analysis of W1 in the last chapter, we
consider as instruction groups

• inner nodes in a spawned tree structure, and

• swaps.

Each level in a recursive call tree, which most of the time amounts to about three actual function calls, is
considered one node in the critical path of the computation dag, as is a swap of two array entries.

The span analysis of two algorithms that form the base of TRIP is a good introduction to the general
principles applied throughout this section.

30

Span of Base Algorithms

The span complexity of reverse and rol depends on the applied algorithms. This analysis is based on
the algorithms reverse and rol, that are listed in Section 5.1.

Since this complexity analysis is restricted to matrices which dimensions are powers of two, the span
of reverse only needs to be known for arrays of even length.

Lemma 5 (Span of reverse). If the length n of array A is a power of two, then

W
reverse
ÿ (n) = log n

2 + 1

Proof. The span consists of the number of subsequent operations in the recursion tree (the depth of the
tree), and the span of the base case. In each recursive call, l is halved. Since initially l = (m1 * m0)_2 =
n_2, this results in a tree depth of log n_2. In the base case, one element of the array is swapped, which
adds 1 to the span W

reverse
ÿ .

Summing up the span of tree spawning and swapping results in

W
reverse
ÿ (n) = log n

2 + 1

Span of rol is calculated for half-rotations. This is because array rotations in TRIP depend on the
number of rows/columns p and q of the sub-matrices, into which a rectangular matrix is divided. Condi-
tion 5.1 results in those divisions being symmetrical, i.e. p = q in this complexity analysis.

Lemma 6 (Span of rol). If length n of array A is a power of two, then the span of rol(n, n_2) is

W
rol
ÿ (n) = log 2*1n + log 2*2n + 3

Proof. rol consists of three reversals of lengths n_2, n_2 and n, where the first two reversals are executed
in parallel.

According to Lemma 3 the first two reversals have span n_4 + 1. Since they are executed in parallel,
and the longest paths of either branch are equally long, the combined span of both reversals is n_4 + 1.
The last reversal contributes span n_2 + 1, since it is executed in serial to the first two reversals.

Summing up all contributions and adding span 1 for the high-level function calls results in

W
rol
ÿ (n, n_2) = log n

2 + log n

4 + 3 = log 2*1n + log 2*2n + 3

Both Lemmas will be used when deriving the span of TRIP.

31

Span of TRIP

Theorem 3 will derive the span of TRIP under constraint 5.1. Since TRIP, merge and split are symmet-
rical w.r.t. the two dimensions of a matrix save for the order of the operations, it su�ces to calculate the
span of calling TRIP on a tall matrix. The work of transposing A

M ,N
is equal to the work of transposing

A
N ,M

.
The total span consists of three contributions

1. spanning the divide tree

2. combining the nodes via merge/split (itself recursive procedures)

3. square-transposing in the leaf nodes

Theorem 3 (Span of TRIP for tall matrices). Let A
M ,N

be a tall matrix that satisfies Condition 5.1.

Then

W
TRIP
ÿ (M ,N) = ⇥

⇠

log M

N
log2N + log2 M

N
logN

⇡

Proof. We begin by counting the levels in the divide tree.

Spanning the divide tree First we consider the levels in the call tree.
The recursion parameter of transpose is m, starting with m0 = M , the number of rows in the matrix

(or sub-matrix). From the definition of TRIP and Condition 5.1 follows

≈
0fi<log M

N

m
i+1 = m

i
_2

The base case of the transpose recursion is m = N , which means the sub-matrix is square. As a binary
tree, the transpose-tree has log M

N
levels.

Combining the nodes via merge The parameterization of merge is di�erent for each level.
At level 0 merge(m0_2,m0_2,N) is called. At level 1 merge(m1_2,m1_2,N) is called, etc.
This is done logM_N times, for 0 f i < logM_N , until mlogM_N*1 = N . In general, at level i

m
i
= N2logM_N*i, and merge(m

i
_2,m

i
_2,N) is called.

This results in the following equation for the span of TRIP:

W
TRIP
ÿ (M ,N) = log M

N
Ǿ̈

levels in TRIP tree

+
…

0fi<log M

N

W
merge
ÿ

�

p
i
, q

i
,N

�

≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

levels in merge trees

(5.6)

+ W
square
ÿ (N)
≠́≠≠≠Ø≠≠≠≠̈

span of leaf of transpose tree (square_transpose)

Continue by calculating the span of a merge call at level i in the transpose tree.

32

The span of combining the recursive TRIP calls with merge at level i of the TRIP tree is the span of
a merge call with parameters p

i
= q

i
= m

i
_2 = N2logM_N*i+1 and recursion parameter n0 = N . The

base case of merge is met when n
j
= 1 for some j. Condition 5.1 ensures that N is a power of 2, and

hence repeatably divisible by two without remainder. Consequently, The binary call-tree of every merge

call has logN levels. Contrary to the transpose tree, the base case of a merge tree does not increase span,
since all work is done in inner nodes.

Summing up the results within the previous paragraph

W
merge
ÿ

�

p
i
, q

i
,N

�

= logN
Ǿ̈

of levels of merge tree

+
…

0fj<logN
W

rol
ÿ

0

n
j

2 p
i
+

n
j

2 q
i
,

n
j

2 p
i

1

≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

span of inner nodes of the merge tree

(5.7)

Since p
i
= q

i
= N2logM_N*i*1 and n

j
= 2logN*j

W
rol
ÿ

0

n
j

2 p
i
+

n
j

2 q
i
,

n
j

2 p
i

1

= W
rol
ÿ

0

n
j

2 (p
i
+ q

i
),
n
j

2 p
i

1

= W
rol
ÿ

0

n
j

2
�

2N2logM_N*i*1�
,

n
j

2 N2logM_N*i*1
1

= W
rol
ÿ

0

n
j
N2logM_N*i*1

,

n
j

2 N2logM_N*i*1
1

= W
rol
ÿ

0

2logN*j
N2logM_N*i*1

,
2logN*j

2 N2logM_N*i*1
1

= W
rol
ÿ

�

N2logN+logM_N*i*j*1
,N2logN+logM_N*i*j*2�

Lemma 6 states for n that are powers of two:

W
rol
ÿ (n, n_2) = log 2*1n + log 2*2n + 3

N2logN+logM_N*i*j*1 is a power of two, so

W
rol
ÿ

�

N2logN+logM_N*i*j*1
,N2logN+logM_N*i*j*2� =

= log
�

N2logN+logM_N*i*j*2� + log
�

N2logN+logM_N*i*j*3� + 3
= 2 logN + 2(logN + logM_N * i * j) * 2
= 4 logN + 2 logM_N * 2i * 2j * 2

33

Plug this span of rol into equation 5.7 and simplify to get W merge
ÿ :

W
merge
ÿ

�

p
i
, q

i
,N

�

= logN +
…

0fj<logN
W

rol
ÿ

0

n
j

2 p
i
+

n
j

2 q
i
,

n
j

2 p
i

1

= logN +
…

0fj<logN
(4 logN + 2 logM_N * 2i * 2j * 2)

= logN
⇠

4 logN + 2 log M

N
* 2i * 2

⇡

* 2
…

0fj<logN
j

= logN
⇠

4 logN + 2 log M

N
* 2i * 2

⇡

*
�

log2N * logN
�

= 3 log2N + 2 log M

N
logN * 2i logN * 1 logN

Plug this result into equation 5.6 to derive the span of TRIP excluding the square transpose in the base
case:

W
TRIP
ÿ (M ,N) = log M

N
+

…

0fi<log M

N

W
merge
ÿ

�

p
i
, q

i
,N

�

+W
square
ÿ (N) (5.8)

= log M

N
+

…

0fi<log M

N

⇠

3 log2N + 2 log M

N
logN * 2i logN * 1 logN

⇡

+W
square
ÿ (N)

= log M

N
+ log M

N

⇠

3 log2N + 2 log M

N
logN * 1 logN

⇡

* logN
⇠

log2 M
N

* log M

N

⇡

+W
square
ÿ (N)

= log M

N
+ log M

N
logN

⇠

3 logN + log M

N

⇡

+W
square
ÿ (N)

The proof is finished by calculating the span of the square transpose.

Span of square transpose The work of square_transpose(N) consists of spanning the recursion-
tree and one swap in the base case of the recursion. The depth of the recursion is logN because the tree
is spawned two-dimensionally, and each recursive call halves the number of rows as well as the number
of columns in the arguments of the recursive call.

Using

W
square
ÿ (N) = logN + 1

We conclude the proof by applying W
square
ÿ in 5.8 to get

W
TRIP
ÿ (M ,N) = log M

N
+ log M

N
logN

⇠

3 logN + log M

N

⇡

+ logN + 1

= ⇥
⇠

log M

N
log2N + log2 M

N
logN

⇡

This result can be generalized, to also holds for wide matrices:

34

Corollary 2 (Span of TRIP). Let A
M ,N

be a tall, wide or square matrix that satisfies Condition 5.1.

Then

W
TRIP
ÿ (M ,N) = ⇥

⇠

log m

n
log2 n + log2 m

n
log n

⇡

where m = max(M ,N) and n = min(M ,N).

Proof. The TRIP recursion is analogous for tall and wide matrices, furthermore merge and split call
rol with the same arguments (under Constraint 5.1 p = q and ‰

n

2Â = ‚

m

2 „ on the respective levels in the
merge/split-tree). The only di�erence between applying TRIP to a tall or a wide matrix occurs inside
merge and split: In merge rol is called before the recursive merge call, in split rol is called after
the recursive call. This di�erence does not cause a change in the span of TRIP.

5.3 Parallelism

This section covers the derivation of parallelism of ⇥
⇠

MN

logM_N+logN

⇡

for rectangular matrices A
M ,N

that

fulfill Condition 5.1, and parallelism ⇥
⇠

N
2

logN

⇡

for square matrices.
The derivation consists of dividing work by span, a case distinction between rectangular and square

matrices, and simplification using Landau symbols.
Recall work and span for M g N :

W
TRIP
1 (M ,N) = ⇥

⇠

MN

⇠

1 + log M

N
logN

⇡⇡

W
TRIP
ÿ (M ,N) = log M

N
+ log M

N
logN

⇠

3 logN + log M

N

⇡

+ logN + 1

Distinguish between the cases M = N and M > N .

Case 1: M = N In this case work and span simplify to

W
TRIP
1 (N ,N) = ⇥

�

N
2�

and
W

TRIP
ÿ (M ,N) = ⇥(logN)

This results in parallelism

W
TRIP
1

W TRIP
ÿ

(N ,N) = ⇥
0

N
2

logN

1

Next, consider the rectangular case

35

Case 2: M > N In this case work and span simplify too, because logN g 1 and log M

N
g 1:

W
TRIP
1 (M ,N) = ⇥

⇠

MN

⇠

log M

N
logN

⇡⇡

W
TRIP
ÿ (M ,N) = ⇥

⇠

log M

N
logN

⇠

logN + log M

N

⇡⇡

Dividing work by span results in parallelism

W
TRIP
1

W TRIP
ÿ

(N ,N) = ⇥
H

MN

log M

N
+ logN

I

The next chapter contains visualizations and interpretations of the results.

5.4 Interpretation of Results

When plotted as a function of the aspect ratio of A
M ,N

, both work and span have the shape of “eagle
curves”. This section contains an interpretation of these curves.

In the following we present plots of work, span and parallelism for rectangular matrices of equal
number of elements, but di�erent aspect ratio, and optimizations.

5.4.1 Work and Span

Plotting di�erent aspect ratios of matrices works as follows. The abscissa i parameterizes the matrices
aspect ratio. For given i the matrix is of dimensions M ùN with M = 2i and N = 220*i. The minimum
in both plots is the case where M = N , i.e. the square case. Left of the minimum are wide matrices,
with the leftmost matrix being of dimension 2 ù 2019. Right of the minimum are tall matrices, with the
rightmost being the tallest. All matrices in one plot have the same number of elements.

Separation of concerns shows that the eagle shape of Figures 5.1 and Figure 5.2 is the result of two
opposing trends: For slightly rectangular matrices, the trees spawned by merge are deep, and merge

encounters high work and span. For very slim, highly rectangular matrices, the TRIP tree has more inner
nodes, and the resulting amount of merge calls increases, though the merge recursion itself is less deep
and encounters less work. These opposing factors multiply and result in these eagle curves.

5.4.2 Parallelism

Counted, actual values for parallelism are compared to the asymptotic results of section 5.3.
Counting work and span in an actual program execution results in exact values for parallelism. Fig-

ure 5.3 shows this comparison.

36

Figure 5.1: Work as function of matrix configuration (i.e. aspect ratio)

5.4.3 Analysis for Matrix Configurations that are not Powers of Two

The complexity analysis of this chapter was limited to matrices, which dimensions are powers of two. In
other cases TRIP behaves less symmetrical, and is harder to analyze. This is because the sub-matrices,
into which the matrix is split, are not of the same sizes in general.

This complex behavior is visible in Figure 5.4 and Figure 5.5. These figures show the counted work
and span for evaluations of TRIP on matrices with about the same number of elements, allowing a 5%
di�erence to increase the number of valid matrix configurations. In these plots the abscissa is the number
of rows in the matrix, the ordinate is work and span respectively.

The analysis of Chapter 5 results in the lower hull of this curves.

5.4.4 Optimizations to the Algorithm

A simple modification that drastically changes work and span of TRIP can be made in the selection of the
sub-matrices of TRIP.

The algorithm, as described in this thesis, is not optimized for matrices that are not powers of two:
Fast convergence to square matrices means less merge and split calls and less work and span, but TRIP

simply bisects rectangular matrices, even though the matrix might already be almost square.
The original way to split a tall matrix into sub-matrices is to divide the matrix into two sub-matrices

of about half the size:

im = (i1 + i0) / 2 ;

In the case of a matrix that is almost square, this simply results in two wide sub-matrices that need to
be divided again. A modification is to divide almost square matrices into one square sub-matrix and a
second rectangular matrix:

37

Figure 5.2: Span as function of matrix configuration (i.e. aspect ratio)

i f (m < 2n)
im = i0 + n ;

e l s e
im = (i1 + i0) / 2 ;

This way work can be reduced, though span cannot. This can be seen in Figure 5.6 and Figure 5.7.

38

Figure 5.3: Comparison between actual parallelism and result of asymptotic analysis.

Figure 5.4: Work as function of number of rows for matrices of roughly the same number of elements
(allowing a 5% di�erence).

39

Figure 5.5: Span as function of number of rows for matrices of roughly the same number of elements
(allowing a 5% di�erence).

Figure 5.6: Work as function of number of rows for matrices of roughly the same number of elements
(allowing a 5% di�erence).

40

Figure 5.7: Span as function of number of rows for matrices of roughly the same number of elements
(allowing a 5% di�erence).

41

6 Experimental Results

The results in this chapter are tests of performance and scalability, and underline the theoretical results
of the previous chapters.

All benchmarks have been executed on the same instance of a Google Cloud Intel Haswell n1-highcpu-
64 instance with 64 vCPUs, and 57.6 GB memory. All benchmarks that utilize less than 64 cores benefit
from an absence of noisy neighbors, since the high core-count virtually guarantees that a whole node
is allocated for the benchmark alone. This reduces noise in the benchmarks, and allows for comparable
results across benchmarks.

6.1 Performance

Of work, span and parallelism, work can be benchmarked e�ciently, since that requires only one CPU
core, as opposed to an arbitrarily large number of cores for span and parallelism.

Work of TRIP can be analyzed in two dimensions: One is the work of matrices with changing aspect
ratio and constant number of elements. This will result in eagle curves, as derived in Chapter 5.1. The
second is the work of matrices with constant aspect ratio, but changing number of elements. In this part
we will show the growth in computational complexity for growing matrix sizes.

6.1.1 Changing Aspect Ratio, Constant Matrix Size

Figure 6.1 shows execution time and scaled work complexity for matrices with 226 elements, but varying
aspect ratio. From left to right the figure shows execution times and work complexity for very wide,
wide, square, tall, and very tall matrices. The chart shows the typical eagle-curve pattern and a very good
agreement between timing and predicted work.

6.1.2 Changing Matrix Size, Constant Aspect Ratio

Figures 6.2, 6.3, 6.4, 6.5, and 6.6 show experiments that test the computational complexity for changing
matrix size. This is done for multiple aspect ratios: for very wide, slightly wide, square, slightly tall, and
tall matrices. The left vertical axis shows the execution time of TRIP for the given matrix size, the right
vertical axis shows the scaled, asymptotic work complexity. All charts show close agreement between
theoretical results and experiments.

42

Figure 6.1: Comparison of execution time (left vertical axis) and work (right vertical axis) for matrices
with 226 elements and varying aspect ratio

6.2 Scalability

Scalability benchmarks test how the execution time changes, when the number of used processors in-
crease. We depict scalability in the form of speed-up graphs: Given a fixed number of elements and
a fixed configuration—again very wide, wide, square, tall, very tall—the graphs show execution time,
given an increasing number of compute cores. All scalability benchmarks are executed on matrices with
226 elements. That means that for a given graph, the aspect ratio as well as the size of the matrix is fixed,
and only the core-count changes. The graphs in Figures 6.7, 6.8, 6.9, 6.10, and 6.11 show the speed-
up w.r.t. the execution time on one core. Up until 32 cores the algorithm scales virtually perfectly; the
less-than-ideal speed-up with 64 cores is suspected to occur due to hyper-threading.

43

Figure 6.2: The time (left) and scaled, asymptotic work complexity (right) for very wide matrices with
aspect ratio 1 ù 256, and between 210 and 226 elements.

Figure 6.3: The time (left) and scaled, asymptotic work complexity (right) for wide matrices with aspect
ratio 1 ù 8, and between 27 and 225 elements.

44

Figure 6.4: The time (left) and scaled, asymptotic work complexity (right) for square matrices, between
26 and 226 elements.

Figure 6.5: The time (left) and scaled, asymptotic work complexity (right) for tall matrices with aspect
ratio 8 ù 1, and between 27 and 225 elements.

45

Figure 6.6: The time (left) and scaled, asymptotic work complexity (right) for very tall matrices with
aspect ratio 256 ù 1, and between 210 and 226 elements.

Figure 6.7: Speed-up of TRIP on a wide 2 ù 33554432 matrix with 226 entries, up to 64 cores.

46

Figure 6.8: Speed-up of TRIP on a wide 512 ù 131072 matrix with 226 entries, up to 64 cores.

Figure 6.9: Speed-up of TRIP on a square 8192 ù 8192 matrix with 226 entries, up to 64 cores.

47

Figure 6.10: Speed-up of TRIP on a tall 131072 ù 512 matrix with 226 entries, up to 64 cores.

Figure 6.11: Speed-up of TRIP on a tall 33554432 ù 2 matrix with 226 entries, up to 64 cores.

48

7 Conclusions

TRIP is a highly parallel, in-place transpose algorithm for rectangular matrices that is—in contrast to
classic algorithms—based on the divide-and-conquer principle. Its correctness has been proven, and
computational complexity has been analyzed.

The correctness proof of the recursive definition of the algorithm gives freedom to the creators of
concrete implementations. It is possible to apply the same arguments as outlined in the proof to modified
versions of divide-and-conquer principle of TRIP; the correctness of optimized versions of TRIP can be
derived from this proof.
One modification to the algorithm that decreases TRIP’s work is sketched in Section 5.4.4.

Concrete implementations rely on iterators to allow the correct and e�cient calculation of indices in
sub-matrices. Examples of such iterators are presented in this thesis.

Furthermore the thesis o�ers an explanation of the “eagle curves”, which are the graphical represen-
tations of work and span as functions of the matrix dimensions. These eagle curves cover the special case
of matrices which dimensions are powers of two. In general the eagle curves can be interpreted as a lower
bound of complexity for matrices with a given number of elements and varying aspect ratios. The shape
of the eagle curves changes, when matrix dimensions that are no powers of two are taken into account.
Depending on the divide strategy work and span can vary.

The complexity analysis in this thesis is based on bisection; a di�erent strategy is hinted at in Sec-
tion 5.4.4.

Future work may go into the topics of optimization for arbitrary matrix aspect ratios that are not powers
of two, and general analysis for arbitrary aspect ratios.

49

References

[1] J. BENTLEY, Programming Pearls, ACM Press, 2013.

[2] J. BOOTHROYD, Algorithm 302: Transpose Vector Stored Array, Communications of the ACM, 10
(1967), pp. 292–293.

[3] N. BRENNER, Algorithm 467: Matrix Transposition in Place [F1], Communications of the ACM,
16 (1973), pp. 692–694.

[4] E. G. CATE AND D. W. TWIGG, Algorithm 513: Analysis of In-Situ Transposition [F1], Transactions
on Mathematical Software (TOMS, 3 (1977), pp. 104–110.

[5] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to Algorithms, MIT
press, 3 ed., 2009.

[6] J. A. ELLIS AND M. MARKOV, In Situ, Stable Merging by Way of the Perfect Shu�e, The Computer
Journal, 43 (2000), pp. 40–53.

[7] F. E. FICH, J. I. MUNRO, AND P. V. POBLETE, Permuting in Place, SIAM Journal on Computing,
24 (1995), pp. 266–278.

[8] M. FRIGO AND S. G. JOHNSON, The Design and Implementation of FFTW3, Proceedings of the
IEEE, 93 (2005), pp. 216–231.

[9] F. G. GUSTAVSON AND T. SWIRSZCZ, In-Place Transposition of Rectangular Matrices, PARA,
4699 (2006), pp. 560–569.

[10] INTEL©, Reference Manual for Intel
©

Math Kernel Library 11.3 - C. https://software.intel.

com/en-us/node/520862.

[11] P. JAIN, A Simple In-Place Algorithm for In-Shu�e. https://arxiv.org/pdf/0805.1598.pdf,
May 2008.

[12] S. LAFLIN AND M. BREBNER, Algorithm 380: In-Situ Transposition of a Rectangular Matrix [F1],
Communications of the ACM, 13 (1970), pp. 324–326.

[13] OPENCFD LTD. (2009), OpenFOAM – The Open Source CFD Toolbox. www.openfoam.com.

[14] M. R. PORTNOFF, An E�cient Parallel-Processing Method for Transposing Large Matrices in

Place, Image Processing, IEEE Transactions on, 8 (1999), pp. 1265–1275.

50

https://software.intel.com/en-us/node/520862
https://software.intel.com/en-us/node/520862
https://arxiv.org/pdf/0805.1598.pdf
www.openfoam.com

[15] C. E. L. ROBERT D. BLUMOFE, Scheduling Multithreaded Computations by Work Stealing, J. ACM,
46 (1994), pp. 720–748.

[16] T. B. SCHARDL, W. S. MOSES, AND C. E. LEISERSON, Tapir: Embedding fork-join parallelism

into llvm’s intermediate representation, in Proceedings of the 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ACM, 2017, pp. 249–265.

[17] I.-J. SUNG, J. GÓMEZ-LUNA, J. M. GONZÁLEZ-LINARES, N. GUIL, AND W.-M. W. HWU, In-Place

Transposition of Rectangular Matrices on Accelerators, in ACM SIGPLAN Notices, vol. 49, ACM,
2014, pp. 207–218.

[18] D. VYUKOV, Scalable Go Scheduler Design Doc. https://docs.google.com/document/d/

1TTj4T2JO42uD5ID9e89oa0sLKhJYD0Y_kqxDv3I3XMw, 5 2012.

[19] P. WINDLEY, Transposing Matrices in a Digital Computer, The Computer Journal, 2 (1959), pp. 47–
48.

51

https://docs.google.com/document/d/1TTj4T2JO42uD5ID9e89oa0sLKhJYD0Y_kqxDv3I3XMw
https://docs.google.com/document/d/1TTj4T2JO42uD5ID9e89oa0sLKhJYD0Y_kqxDv3I3XMw

Appendix 1 - Code Listing - trip.h

i f n d e f __TRIP
d e f i n e __TRIP

i n c l u d e < s t d d e f . h>
i n c l u d e < s t d i n t . h>

d e f i n e REVERSE_VOODOO 1
d e f i n e MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
d e f i n e MAX(X, Y) (((X) < (Y)) ? (Y) : (X))

t y p e d e f s t r u c t {
u i n t 6 4 _ t work ;
u i n t 6 4 _ t span ;

} ws ;

void n e x t (s i z e _ t � i , s i z e _ t � count , s i z e _ t j0 , s i z e _ t j1 , s i z e _ t N, s i z e _ t p) ;
void p rev (s i z e _ t � i , s i z e _ t � count , s i z e _ t j0 , s i z e _ t j1 , s i z e _ t N, s i z e _ t p) ;

ws r e v e r s e (f l o a t �a , s i z e _ t m0 , s i z e _ t m1 , s i z e _ t i0 , s i z e _ t j0 , s i z e _ t j1 ,
s i z e _ t N) ;

ws r e v e r s e _ r e c u r s i v e (f l o a t �a , s i z e _ t m0 , s i z e _ t m1 , s i z e _ t l , s i z e _ t i0 ,
s i z e _ t j0 , s i z e _ t j1 , s i z e _ t N) ;

ws r e v e r s e _ o f f s e t (f l o a t �a , s i z e _ t m0 , s i z e _ t m1 , s i z e _ t l , s i z e _ t i0 ,
s i z e _ t j0 , s i z e _ t j1 , s i z e _ t N) ;

void s w a p _ s i n g l e (f l o a t �x , f l o a t �y) ;

ws merge (f l o a t �a , s i z e _ t p , s i z e _ t q , s i z e _ t i0 , s i z e _ t i1 , s i z e _ t j0 ,
s i z e _ t j1 , s i z e _ t N) ;

ws merger (f l o a t �a , s i z e _ t p , s i z e _ t q , s i z e _ t i0 , s i z e _ t i1 , s i z e _ t j0 ,
s i z e _ t j1 , s i z e _ t m0 , s i z e _ t m1 , s i z e _ t k , s i z e _ t N) ;

ws s p l i t (f l o a t �a , s i z e _ t p , s i z e _ t q , s i z e _ t i0 , s i z e _ t i1 , s i z e _ t j0 ,
s i z e _ t j1 , s i z e _ t N) ;

ws s p l i t r (f l o a t �a , s i z e _ t p , s i z e _ t q , s i z e _ t i0 , s i z e _ t i1 , s i z e _ t j0 ,

52

s i z e _ t j1 , s i z e _ t s0 , s i z e _ t s1 , s i z e _ t k , s i z e _ t N) ;

ws t r a n s p o s e (f l o a t �a , s i z e _ t i0 , s i z e _ t i1 , s i z e _ t j0 , s i z e _ t j1 , s i z e _ t N) ;
ws t r a n s p o s e 4 (f l o a t �a , s i z e _ t I0 , s i z e _ t J0 , s i z e _ t i0 , s i z e _ t i1 , s i z e _ t j0 ,

s i z e _ t j1 , s i z e _ t N) ;

ws combineComplex i ty (ws a , ws b) ;
void addComplex i ty (ws � c o n s t a , ws b) ;
void combineAndAddComplexity (ws � c o n s t comp , ws a , ws b) ;
void combineAndAddComplexity4 (ws � c o n s t comp , ws a , ws b , ws c , ws d) ;
void i n c r e a s e C o m p l e x i t y (ws � c o n s t comp) ;

e n d i f

53

Appendix 2 - Code Listing - trip.c

i n c l u d e " t r i p . h "
i n c l u d e < c i l k / c i l k . h>

ws t r a n s p o s e (f l o a t �a , s i z e _ t i0 , s i z e _ t i1 , s i z e _ t j0 , s i z e _ t j1 , s i z e _ t N) {
s i z e _ t m, n ;
ws comp = {1 , 1 } ;

m = i 1 * i 0 ;
n = j 1 * j 0 ;

i f ((m == 1) | | (n == 1)) {
re turn comp ;

}
i f (m == n) {

ws t4Comp = t r a n s p o s e 4 (a , i0 , j0 , 0 , m, 0 , n , N) ;
addComplex i ty (&comp , t4Comp) ;
re turn comp ;

} e l s e i f (m > n) {
s i z e _ t im ;
i f (m < 2 � n)

im = i 0 + n ;
e l s e

im = (i 1 + i 0) / 2 ;

ws tComp1 = c i l k _ s p a w n t r a n s p o s e (a , i0 , im , j0 , j1 , N) ;
ws tComp2 = c i l k _ s p a w n t r a n s p o s e (a , im , i1 , j0 , j1 , N) ;
c i l k _ s y n c ;
combineAndAddComplexity (&comp , tComp1 , tComp2) ;

ws mComp = merge (a , im * i0 , i 1 * im , i0 , i1 , j0 , j1 , N) ;
addComplex i ty (&comp , mComp) ;
re turn comp ;

} e l s e { / / (m < n)

54

s i z e _ t jm ;
i f (2 � m > n)

jm = j 0 + m;
e l s e

jm = (j 1 + j 0) / 2 ;

ws tComp1 = c i l k _ s p a w n t r a n s p o s e (a , i0 , i1 , j0 , jm , N) ;
ws tComp2 = c i l k _ s p a w n t r a n s p o s e (a , i0 , i1 , jm , j1 , N) ;
c i l k _ s y n c ;
combineAndAddComplexity (&comp , tComp1 , tComp2) ;

ws sComp = s p l i t (a , jm * j0 , j 1 * jm , i0 , i1 , j0 , j1 , N) ;
addComplex i ty (&comp , sComp) ;
re turn comp ;

}
re turn comp ;

}

ws s p l i t (f l o a t �a , s i z e _ t p , s i z e _ t q , s i z e _ t i0 , s i z e _ t i1 , s i z e _ t j0 ,
s i z e _ t j1 , s i z e _ t N) {

s i z e _ t s0 , s1 ;

s0 = 0 ;
s1 = (j 1 * j 0) � (i 1 * i 0) ;

re turn s p l i t r (a , p , q , i0 , i1 , j0 , j1 , s0 , s1 , i 1 * i0 , N) ;
}

ws s p l i t r (f l o a t �a , s i z e _ t p , s i z e _ t q , s i z e _ t i0 , s i z e _ t i1 , s i z e _ t j0 ,
s i z e _ t j1 , s i z e _ t s0 , s i z e _ t s1 , s i z e _ t k , s i z e _ t N) {

s i z e _ t k2 = k / 2 ;
s i z e _ t rm , r0 , r1 ;
s i z e _ t sm ;
ws comp = {1 , 1 } ;

i f (k == 1) re turn comp ;

/ / s p l i t l e f t and r i g h t p a r t

sm = s0 + k2 � (p + q) ;
ws sComp1 = c i l k _ s p a w n s p l i t r (a , p , q , i0 , i1 , j0 , j1 , s0 , sm , k2 , N) ;

55

ws sComp2 = c i l k _ s p a w n s p l i t r (a , p , q , i0 , i1 , j0 , j1 , sm , s1 , k * k2 , N) ;
c i l k _ s y n c ;
combineAndAddComplexity (&comp , sComp1 , sComp2) ;

/ / r o t a t e m i d d l e p a r t

r0 = s0 + k2 � p ;
r1 = s0 + k � p + k2 � q ;

ws rComp = c i l k _ s p a w n r e v e r s e (a , r0 , r1 , i0 , j0 , j1 , N) ;
c i l k _ s y n c ;
addComplex i ty (&comp , rComp) ;

/ / r o t a t e l e f t and r i g h t p a r t

rm = s0 + k � p ;
ws rComp1 = c i l k _ s p a w n r e v e r s e (a , r0 , rm , i0 , j0 , j1 , N) ;
ws rComp2 = c i l k _ s p a w n r e v e r s e (a , rm , r1 , i0 , j0 , j1 , N) ;
c i l k _ s y n c ;
combineAndAddComplexity (&comp , rComp1 , rComp2) ;

re turn comp ;
}

void n e x t (s i z e _ t � i , s i z e _ t � count , s i z e _ t j0 , s i z e _ t j1 , s i z e _ t N, s i z e _ t p) {
i f (� c o u n t == p * 1) {

� c o u n t = 0 ;
� i += (N * j 1) + j 0 + 1 ;

} e l s e {
� c o u n t += 1 ;
� i += 1 ;

}
}

void p rev (s i z e _ t � i , s i z e _ t � count , s i z e _ t j0 , s i z e _ t j1 , s i z e _ t N, s i z e _ t p) {
i f (� c o u n t == 0) {

� c o u n t = p * 1 ;
� i *= j 0 + (N * j 1) + 1 ;

} e l s e {
� c o u n t *= 1 ;
� i *= 1 ;

}

56

}

/

a a r r a y

i 0 . . . v e r t i c a l o f f s e t o f sub*m a t r i x

j 0 . . . h o r i z o n t a l o f f s e t o f sub*m a t r i x

j 1 . . . h o r i z o n t a l o f f s e t o f end o f sub*m a t r i x ; j 0 t o j 1 i s t h e span o f t h e

m a t r i x

N w i d t h o f o r i g i n a l m a t r i x

m0 . . . l e f t boundary i n d e x o f a r r a y t o be r e v e r s e d

m1 . . . r i g h t boundary i n d e x o f a r r a y t o be r e v e r s e d

l p a r a l l e l i z a t i o n i n d e x . . r e v e r s e _ o f f s e t w i l l swap be tween

m0 and l , and m1* l and m1

/

ws r e v e r s e _ o f f s e t (f l o a t �a , s i z e _ t m0 , s i z e _ t m1 , s i z e _ t l , s i z e _ t i0 ,
s i z e _ t j0 , s i z e _ t j1 , s i z e _ t N) {

s i z e _ t i , n e x t _ c o u n t ;
s i z e _ t j , p r e v _ c o u n t ;
s i z e _ t m, mm;
s i z e _ t p ;
f l o a t tmp ;
ws comp = {0 , 0 } ;

p = j 1 * j 0 ;

/ / i n d e x s t a r t i n g from l e f t (go ing r i g h t) ; o r i g i n a l m a t r i x i n d e x

i = i 0 � N + j 0 + (m0 / p) � N + (m0 % p) ;
n e x t _ c o u n t = m0 % p ;

/ / i n d e x s t a r t i n g from r i g h t (go ing l e f t) ; o r i g i n a l m a t r i x i n d e x

j = i 0 � N + j 0 + ((m1 * 1) / p) � N + ((m1 * 1) % p) ;
p r e v _ c o u n t = (m1 * 1) % p ;

mm = m0 + l ;
f o r (m = m0 ; m < mm; n e x t (& i , &n e x t _ c o u n t , j0 , j1 , N, p) ,

p r e v (& j , &p rev _ co u n t , j0 , j1 , N, p) , m++) {
tmp = a [j] ;
a [j] = a [i] ;
a [i] = tmp ;
i n c r e a s e C o m p l e x i t y (&comp) ;

57

}
re turn comp ;

}

ws r e v e r s e (f l o a t �a , s i z e _ t m0 , s i z e _ t m1 , s i z e _ t i0 , s i z e _ t j0 , s i z e _ t j1 ,
s i z e _ t N) {

re turn r e v e r s e _ r e c u r s i v e (a , m0 , m1 , (m1 * m0) / 2 , i0 , j0 , j1 , N) ;
}

/

r e v e r s e s a sub* l i s t i n a b l o c k i n a m a t r i x .

a , i0 , j0 , j1 , p , N . . . non*p a r a l l e l i z i n g p a r a m e t e r s

a a r r a y

m0 . . . s t a r t i n g i n d e x o f sub*a r r a y t o be r e v e r s e d

m1 . . . end* i n d e x o f sub*a r r a y t o be r e v e r s e d (e x c l u s i v e)

l p a r a l l e l i z a t i o n parame te r (use (m1*m0) / 2 t o i n i t i a l i z e)

l e n g t h o f sub*a r r a y t o be swapped w i t h r i g h t p a r t o f a r r a y

i 0 . . . o f f s e t o f sub*m a t r i x i n v e r t i c a l d i r e c t i o n

j 0 . . . o f f s e t o f sub*m a t r i x i n h o r i z o n t a l d i r e c t i o n

j 1 . . . o f f s e t o f end o f sub*m a t r i x i n h o r i z o n t a l d i r e c t i o n (e x c l u s i v e)

N w i d t h o f o r i g i n a l m a t r i x

/

ws r e v e r s e _ r e c u r s i v e (f l o a t �a , s i z e _ t m0 , s i z e _ t m1 , s i z e _ t l , s i z e _ t i0 ,
s i z e _ t j0 , s i z e _ t j1 , s i z e _ t N) {

ws comp = {1 , 1 } ;

i f (l > REVERSE_VOODOO) {
s i z e _ t lm = l / 2 ;

ws rComp1 = c i l k _ s p a w n r e v e r s e _ r e c u r s i v e (a , m0 , m1 , lm , i0 , j0 , j1 , N) ;
ws rComp2 = c i l k _ s p a w n r e v e r s e _ r e c u r s i v e (a , m0 + lm , m1 * lm , l * lm , i0 ,

j0 , j1 , N) ;
c i l k _ s y n c ;
combineAndAddComplexity (&comp , rComp1 , rComp2) ;

} e l s e {
ws rComp = r e v e r s e _ o f f s e t (a , m0 , m1 , l , i0 , j0 , j1 , N) ;
addComplex i ty (&comp , rComp) ;

}
re turn comp ;

}

58

/

merges t h e b l o c k d e f i n e d by t h e b o u n d a r i e s [i0 , i 1 [and [j0 , j 1 [

/

ws merge (f l o a t �a , s i z e _ t p , s i z e _ t q , s i z e _ t i0 , s i z e _ t i1 , s i z e _ t j0 ,
s i z e _ t j1 , s i z e _ t N) {

s i z e _ t m0 , m1 ;

m0 = 0 ;
m1 = (j 1 * j 0) � (i 1 * i 0) ;
re turn merger (a , p , q , i0 , i1 , j0 , j1 , m0 , m1 , j 1 * j0 , N) ;

}

/

a a r r a y

p number o f upper rows t o be merged

q number o f lower rows t o be merged

i 0 . . . s t a r t i n g row o f sub*m a t r i x (i n c l u s i v e)

i 1 . . . en d i n g row o f sub*m a t r i x (e x c l u s i v e)

j 0 . . . s t a r t i n g column o f sub*m a t r i x (i n c l u s i v e)

j 1 . . . en d i n g column o f sub*m a t r i x (e x c l u s i v e)

m0 . . . s t a r t i n g i n d e x o f t h e sub*p a r t o f t h e a r r a y t o be merged (i n c l u s i v e)

m1 . . . en d i n g i n d e x o f t h e sub*p a r t o f t h e a r r a y t o be merged (e x c l u s i v e)

k t e r m i n a t i o n parame te r

N number o f columns i n t h e o r i g i n a l b i g m a t r i x (f o r i t e r a t o r s i n

‘ r e v e r s e ‘)

/

ws merger (f l o a t �a , s i z e _ t p , s i z e _ t q , s i z e _ t i0 , s i z e _ t i1 , s i z e _ t j0 ,
s i z e _ t j1 , s i z e _ t m0 , s i z e _ t m1 , s i z e _ t k , s i z e _ t N) {

s i z e _ t k2 = k / 2 ; / / == k / 2

s i z e _ t rm , r0 , r1 ; / / r e v e r s a l middle* and end*p o s i z e _ t s

s i z e _ t mm;
ws comp = {1 , 1 } ;

i f (k == 1) re turn comp ;

/ / f o r r o t a t i o n f i r s t r e v e r s e mi dd l e p a r t

/ / t h e n r e v e r s e l e f t and r i g h t

/ / f i r s t r e v e r s e whole m i dd l e p a r t

59

r0 = m0 + k2 � p ;
r1 = m0 + k � p + k2 � q ;

ws rComp = r e v e r s e (a , r0 , r1 , i0 , j0 , j1 , N) ;
addComplex i ty (&comp , rComp) ;

/ / t h e n r e v e r s e l e f t and r i g h t o f t h e mi dd l e p a r t

rm = r0 + k2 � q ;
ws rComp1 = c i l k _ s p a w n r e v e r s e (a , r0 , rm , i0 , j0 , j1 , N) ;
ws rComp2 = c i l k _ s p a w n r e v e r s e (a , rm , r1 , i0 , j0 , j1 , N) ;
c i l k _ s y n c ;
combineAndAddComplexity (&comp , rComp1 , rComp2) ;

/ / now merge t h e r e s u l t i n g sub*a r r a y s

mm = m0 + k2 � (p + q) ; / / == rm

ws mComp1 = c i l k _ s p a w n merger (a , p , q , i0 , i1 , j0 , j1 , m0 , mm, k2 , N) ;
ws mComp2 =

c i l k _ s p a w n merger (a , p , q , i0 , i1 , j0 , j1 , mm, m1 , k * k2 ,
N) ; / / k*k2 so n o t bo th k2 ’ s are 1 i n case o f e . g . k==3

c i l k _ s y n c ;
combineAndAddComplexity (&comp , mComp1 , mComp2) ;

re turn comp ;
}

/

a a r r a y

I0 . . . upper s t a r t i n g row o f sub*m a t r i x (i n c l u s i v e)

J0 . . . l e f t s t a r t i n g column o f sub*m a t r i x (i n c l u s i v e)

i 0 . . . upper s t a r t i n g row o f p a r a l l e l p a r t i t i o n o f sub*m a t r i x t o be

t r a n s p o s e d (i n c l u s i v e)

i 1 . . . l ower en d i n g row o f p a r a l l e l p a r t i t i o n o f sub*m a t r i x t o be t r a n s p o s e d

(e x c l u s i v e)

j 0 . . . l e f t s t a r t i n g column o f p a r a l l e l p a r t i t i o n o f sub*m a t r i x t o be

t r a n s p o s e d (i n c l u s i v e)

j 1 . . . r i g h t en d i n g column o f p a r a l l e l p a r t i t i o n o f sub*m a t r i x t o be

t r a n s p o s e d (e x c l u s i v e)

N number o f columns o f o r i g i n a l m a t r i x

/

ws t r a n s p o s e 4 (f l o a t �a , s i z e _ t I0 , s i z e _ t J0 , s i z e _ t i0 , s i z e _ t i1 , s i z e _ t j0 ,

60

s i z e _ t j1 , s i z e _ t N) {
ws comp = {1 , 1 } ;

i f (i 1 * i 0 > 1) {
s i z e _ t im = (i 0 + i 1) / 2 , jm = (j 0 + j 1) / 2 ;
ws tComp1 , tComp2 , tComp3 , tComp4 = {0 , 0 } ;
tComp1 = c i l k _ s p a w n t r a n s p o s e 4 (a , I0 , J0 , i0 , im , j0 , jm , N) ;
tComp2 = c i l k _ s p a w n t r a n s p o s e 4 (a , I0 , J0 , i0 , im , jm , j1 , N) ;
tComp3 = c i l k _ s p a w n t r a n s p o s e 4 (a , I0 , J0 , im , i1 , jm , j1 , N) ;
i f (i 1 <= j 0) tComp4 = c i l k _ s p a w n t r a n s p o s e 4 (a , I0 , J0 , im , i1 , j0 , jm , N) ;
c i l k _ s y n c ;
combineAndAddComplexity4 (&comp , tComp1 , tComp2 , tComp3 , tComp4) ;

} e l s e {
s i z e _ t j ;
f o r (j = j 0 ; j < j 1 ; j ++) {

s w a p _ s i n g l e (&a [(I0 + j) � N + J0 + i 0] , &a [(I0 + i 0) � N + J0 + j]) ;
i n c r e a s e C o m p l e x i t y (&comp) ;

}
}
re turn comp ;

}

void s w a p _ s i n g l e (f l o a t �x , f l o a t �y) {
f l o a t t = �x ;
�x = �y ;
�y = t ;

}

ws combineComplex i ty (ws a , ws b) {
ws r e s u l t ;

r e s u l t . span = MAX(a . span , b . span) ;
r e s u l t . work = a . work + b . work ;

re turn r e s u l t ;
}

void addComplex i ty (ws � c o n s t comp , ws b) {
comp*>span += b . span ;

61

comp*>work += b . work ;
}

void combineAndAddComplexity (ws � c o n s t comp , ws a , ws b) {
ws combined = combineComplex i ty (a , b) ;
addComplex i ty (comp , combined) ;

}

void combineAndAddComplexity4 (ws � c o n s t comp , ws a , ws b , ws c , ws d) {
ws ab = combineComplex i ty (a , b) ;
ws cd = combineComplex i ty (c , d) ;
ws abcd = combineComplex i ty (ab , cd) ;
addComplex i ty (comp , abcd) ;

}

void i n c r e a s e C o m p l e x i t y (ws � c o n s t comp) {
comp*>span += 1 ;
comp*>work += 1 ;

}

62

	Contents
	Introduction
	Related Work
	Review of In-place Matrix Transpose Algorithms
	Further Influences

	Description of Transpose Algorithm
	Basic Definitions
	Transpose
	Merge
	Split
	Square Transpose
	Iterators

	Proof of Correctness
	Correctness Proof of Combine Method merge
	Correctness Proof of Combine Method split
	Correctness Proof of TRIP

	Complexity Analysis
	Work
	Span
	Parallelism
	Interpretation of Results
	Work and Span
	Parallelism
	Analysis for Matrix Configurations that are not Powers of Two
	Optimizations to the Algorithm

	Experimental Results
	Performance
	Changing Aspect Ratio, Constant Matrix Size
	Changing Matrix Size, Constant Aspect Ratio

	Scalability

	Conclusions
	References

